Skip to main content

Step by Step with ELISA: Mechanism of Operation, Crucial Elements, Different Protocols, and Insights on Immobilization and Detection of Various Biomolecular Entities

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSFOMEBI))

Abstract

Current chapter describes the essential components of ELISA including the solid phase, the adsorbents (different types of target biomolecules), and the washing and blocking agents used in assay procedure. The chapter also reviews widely applied enzymes and substrates with their specific characteristics. To complete the assay, the chapter offers information regarding the stopping procedure and readout techniques such as colorimetric, fluorescence and luminescence, along with their reading instruments. To secure a high specificity, the chapter describes protocols for conducting different types of controls in the assay procedure. These controls are namely: positive, endogenous, negative, standard, and spike controls. The chapter subsequently describes available ELISA protocols including direct, indirect, sandwich, double sandwich, and competitive assays. Finally, this chapter is dedicated to reviewing immobilization techniques including physical, covalent, oriented strategies as well as immobilization via entrapment. In the case of covalent immobilization of the biomolecules, protein attachment via zero-length cross linkers and spacers (linear or branched) are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hosseini S, Aeinehvand MM, Uddin SM, Benzina A, Rothan HA, Yusof R et al (2015) Microsphere integrated microfluidic disk: synergy of two techniques for rapid and ultrasensitive dengue detection. Sci Rep 5

    Google Scholar 

  2. Hosseini S, Ibrahim F (2016) Application of biochips in dengue virus detection. Novel polymeric biochips for enhanced detection of infectious diseases. Springer. pp 39–47

    Google Scholar 

  3. Hosseini S, Azari P, Aeinehvand MM, Rothan HA, Djordjevic I, Martinez-Chapa SO et al (2016) Intrant ELISA: a novel approach to fabrication of electrospun fiber mat-assisted biosensor platforms and their integration within standard analytical well plates. Appl Sci 6:336

    Article  Google Scholar 

  4. Farahmand E, Ibrahim F, Hosseini S, Rothan HA, Yusof R, Koole LH et al (2015) A novel approach for application of nylon membranes in the biosensing domain. Appl Surf Sci 353:1310–1319

    Article  Google Scholar 

  5. Hosseini S, Ibrahim F, Djordjevic I, Rothan HA, Yusof R, van der Mareld C et al (2014) Synthesis and processing of ELISA polymer substitute: the influence of surface chemistry and morphology on detection sensitivity. Appl Surf Sci 317:630–638

    Article  Google Scholar 

  6. Hosseini S, Ibrahim F, Rothan HA, Yusof R, Cvd Marel, Djordjevic I et al (2015) Aging effect and antibody immobilization on −COOH exposed surfaces designed for dengue virus detection. Biochem Eng J 99:183–192

    Article  Google Scholar 

  7. Hosseini S, Azari P, Farahmand E, Gan SN, Rothan HA, Yusof R et al (2015) Polymethacrylate coated electrospun PHB fibers: an exquisite outlook for fabrication of paper-based biosensors. Biosens Bioelectron 69:257–264

    Article  Google Scholar 

  8. Hosseini S, Ibrahim F, Djordjevic I, Rothan HA, Yusof R, Cvd Marel et al (2014) Synthesis and characterization of methacrylic microspheres for biomolecular recognition: ultrasensitive biosensor for dengue virus detection. Eur Polym J 60:14–21

    Article  Google Scholar 

  9. Ryoichi D (2014) Precise micromolar-level glucose determination using a glucose test strip for quick and approximate millimolar-level estimation. Anal Methods 6:9509–9513

    Article  Google Scholar 

  10. Umareddy I, Pluquet O, Wang QY, Vasudevan SG, Chevet E, Gu F (2007) Dengue virus serotype infection specifies the activation of the unfolded protein response. Virol J 4:91

    Article  Google Scholar 

  11. Benkert A, Scheller F, Schössler W, Hentschel C, Micheel B, Behrsing O et al (2000) Development of a creatinine ELISA and an amperometric antibody-based creatinine sensor with a detection limit in the nanomolar range. Anal Chem 72:916–921

    Article  Google Scholar 

  12. Novo P, Prazeres DMF, Chu V, Conde JP (2011) Microspot-based ELISA in microfluidics: chemiluminescence and colorimetry detection using integrated thin-film hydrogenated amorphous silicon photodiodes. Lab Chip 11:4063–4071

    Article  Google Scholar 

  13. Zhu N, Lin Y, Yu P, Su L, Mao L (2009) Label-free and sequence-specific DNA detection down to a picomolar level with carbon nanotubes as support for probe DNA. Anal Chim Acta 650:44–48

    Article  Google Scholar 

  14. Kannan B, Williams DE, Laslau C, Travas-Sejdic J (2012) A highly sensitive, label-free gene sensor based on a single conducting polymer nanowire. Biosens Bioelectron 35:258–264

    Article  Google Scholar 

  15. Yu F, Persson B, Löfås S, Knoll W (2004) Surface plasmon fluorescence immunoassay of free prostate-specific antigen in human plasma at the femtomolar level. Anal Chem 76:6765–6770

    Article  Google Scholar 

  16. Vilela P, El-Sagheer A, Millar TM, Brown T, Muskens OL, Kanaras AG (2016) Graphene oxide-upconversion nanoparticle based optical sensors for targeted detection of mRNA biomarkers present in Alzheimer’s disease and prostate cancer. ACS Sens 2:52–56

    Article  Google Scholar 

  17. Niemeyer CM, Adler M, Wacker R (2005) Immuno-PCR: high sensitivity detection of proteins by nucleic acid amplification. Trends Biotechnol 23:208–216

    Article  Google Scholar 

  18. Nam J-M, Thaxton CS, Mirkin CA (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301:1884–1886

    Article  Google Scholar 

  19. Yao B, Li J, Huang H, Sun C, Wang Z, Fan Y et al (2009) Quantitative analysis of zeptomole microRNAs based on isothermal ramification amplification. RNA 15:1787–1794

    Article  Google Scholar 

  20. Hosseini S, Ibrahim F, Djordjevic I, Koole LH (2014) Recent advances in surface functionalization techniques on polymethacrylate materials for optical biosensor applications. Analyst 139:2933–2943

    Article  Google Scholar 

  21. Lowe J, Bird P, Hardie D, Jefferis R, Ling N (1982) Monoclonal antibodies (McAbs) to determinants on human gamma chains: properties of antibodies showing subclass restriction or subclass specificity. Immunology 47:329

    Google Scholar 

  22. Vidarsson G, Dekkers G, Rispens T (2014) IgG subclasses and allotypes: from structure to effector functions. Front Immunol 5

    Google Scholar 

  23. Cerutti ML, Centeno JM, Goldbaum FA, de Prat-Gay G (2001) Generation of sequence-specific, high affinity anti-DNA antibodies. J Biol Chem 276:12769–12773

    Article  Google Scholar 

  24. Jung E, Lee J, Hong HJ, Park I, Lee Y (2014) RNA recognition by a human antibody against brain cytoplasmic 200 RNA. RNA 20:805–814

    Article  Google Scholar 

  25. Wu H, Lustbader JW, Liu Y, Canfield RE, Hendrickson WA (1994) Structure of human chorionic gonadotropin at 2.6 Å resolution from MAD analysis of the selenomethionyl protein. Structure 2:545–558

    Article  Google Scholar 

  26. Srilatha N, Murthy G (1996) Mapping of assembled epitopic regions of human chorionic gonadotropin reveals proximity of CTPα to the determinant loop ß93-100

    Google Scholar 

  27. Muller YA, Chen Y, Christinger HW, Li B, Cunningham BC, Lowman HB et al (1998) VEGF and the Fab fragment of a humanized neutralizing antibody: crystal structure of the complex at 2.4 Å resolution and mutational analysis of the interface. Structure 6:1153–1167

    Article  Google Scholar 

  28. Senger DR, Van De Water L, Brown LF, Nagy JA, Yeo K-T, Yeo T-K et al (1993) Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer Metastasis Rev 12:303–324

    Article  Google Scholar 

  29. Reis LF, Van Sluys M-A, Garratt RC, Pereira HM, Teixeira MM (2006) GMOs: building the future on the basis of past experience. An Acad Bras Ciênc 78:667–686

    Article  Google Scholar 

  30. Gromowski GD, Barrett ND, Barrett AD (2008) Characterization of dengue virus complex-specific neutralizing epitopes on envelope protein domain III of dengue 2 virus. J Virol 82:8828–8837

    Article  Google Scholar 

  31. Smith A, Chapman M (1997) Localization of antigenic sites on Der p 2 using oligonucleotide-directed mutagenesis targeted to predicted surface residues. Clin Exp Allergy 27:593–599

    Article  Google Scholar 

  32. Burks A, Shin D, Cockrell G, Stanley JS, Helm RM, Bannon GA (1997) Mapping and mutational analysis of the IgE-binding epitopes on Ara h 1, a legume vicilin protein and a major allergen in peanut hypersensitivity. FEBS J 245:334–339

    Google Scholar 

  33. Liu Z, Gurlo T, von Grafenstein H (2000) Cell-ELISA using β-galactosidase conjugated antibodies. J Immunol Methods 234:P153–P167

    Article  Google Scholar 

  34. Voller A, Bidwell D, Bartlett A (1976) Enzyme immunoassays in diagnostic medicine: theory and practice. Bull WHO 53:55

    Google Scholar 

  35. Voller A, Bartlett A, Bidwell D (1978) Enzyme immunoassays with special reference to ELISA techniques. J Clin Pathol 31:507–520

    Article  Google Scholar 

  36. Crowther JR (2009) The ELISA guidebook. Springer. ISBN 978-1-60327-254-4

    Google Scholar 

  37. Bronstein I, Edwards B, Voyta JC (1989) 1,2-Dioxetanes: novel chemiluminescent enzyme substrates. Appl Immunoass Lumin 4:99–111

    Google Scholar 

  38. Hosseini S, Vázquez-Villegas P, Martínez-Chapa SO (2017) Paper and fiber-based bio-diagnostic platforms: current challenges and future needs. Appl Sci 7:863

    Article  Google Scholar 

  39. Ahmed S, Bui M-PN, Abbas A (2016) Paper-based chemical and biological sensors: engineering aspects. Biosens Bioelectron 77:249–263

    Article  Google Scholar 

  40. De La Rica R, Stevens MM (2013) Plasmonic ELISA for the detection of analytes at ultralow concentrations with the naked eye. Nat Protoc 8:1759

    Article  Google Scholar 

  41. Liu Y, Wang H, Huang J, Yang J, Liu B, Yang P (2009) Microchip-based ELISA strategy for the detection of low-level disease biomarker in serum. Anal Chim Acta 650:77–82

    Article  Google Scholar 

  42. Jonkheijm P, Weinrich D, Schroder H, Niemeyer CM, Waldmann H (2008) Chemical strategies for generating protein biochips. Angew Chem Int Ed 47:9618–9647

    Article  Google Scholar 

  43. Goddard JM, Hotchkiss JH (2007) Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci 32:698–725

    Article  Google Scholar 

  44. Liu Y, Li CM (2012) Advanced immobilization and amplification for high performance protein chips. Anal Lett 45:130–155

    Article  Google Scholar 

  45. Khan AA, Alzohairy MA (2010) Recent advances and applications of immobilized enzyme technologies: A review. Res J Biol Sci 5:565–575

    Article  Google Scholar 

  46. Rao S, Anderson K, Bachas L (1998) Oriented immobilization of proteins. Microchim Acta 128:127–143

    Article  Google Scholar 

  47. YoungáJeong J, HyunáChung B (2008) Recent advances in immobilization methods of antibodies on solid supports. Analyst 133:697–701

    Article  Google Scholar 

  48. Yoon J-Y, Park H-Y, Kim J-H, Kim W-S (1996) Adsorption of BSA on highly carboxylated microspheres—quantitative effects of surface functional groups and interaction forces. J Colloid Interface Sci 177:613–620

    Article  Google Scholar 

  49. Alcon S, Talarmin A, Debruyne M, Falconar A, Deubel V, Flamand M (2002) Enzyme-linked immunosorbent assay specific to dengue virus type 1 nonstructural protein NS1 reveals circulation of the antigen in the blood during the acute phase of disease in patients experiencing primary or secondary infections. J Clin Microbiol 40:376–381

    Article  Google Scholar 

  50. Xu H, Di B, Y-x Pan, L-w Qiu, Y-d Wang, Hao W et al (2006) Serotype 1-specific monoclonal antibody-based antigen capture immunoassay for detection of circulating nonstructural protein NS1: implications for early diagnosis and serotyping of dengue virus infections. J Clin Microbiol 44:2872–2878

    Article  Google Scholar 

  51. Scouten WH, Luong JHT, Stephen Brown R (1995) Enzyme or protein immobilization techniques for applications in biosensor design. Trends Biotechnol 13:178–185

    Article  Google Scholar 

  52. Reetz MT, Zonta A, Simpelkamp J (1996) Efficient immobilization of lipases by entrapment in hydrophobic sol-gel materials. Biotechnol Bioeng 49:527–534

    Article  Google Scholar 

  53. Beckett CG, Kosasih H, Faisal I, Tan R, Widjaja S, Listiyaningsih E et al (2005) Early detection of dengue infections using cluster sampling around index cases. Am J Trop Med Hyg 72:777–782

    Google Scholar 

  54. Foulds NC, Lowe CR (1986) Enzyme entrapment in electrically conducting polymers. Immobilisation of glucose oxidase in polypyrrole and its application in amperometric glucose sensors. J Chem Soc Faraday Trans 1: Phys Chem Condens Phases 82:1259–1264

    Article  Google Scholar 

  55. Avnir D, Braun S, Lev O, Ottolenghi M (1994) Enzymes and other proteins entrapped in sol-gel materials. Chem Mater 6:1605–1614

    Article  Google Scholar 

  56. Thomson DAC, Tee EHL, Tran NTD, Monteiro MJ, Cooper MA (2012) Oligonucleotide and polymer functionalized nanoparticles for amplification-free detection of DNA. Biomacromol 13:1981–1989

    Article  Google Scholar 

  57. Ghasemi M, Minier MJG, Tatoulian M, Chehimi MM, Arefi-Khonsari F (2011) Ammonia plasma treated polyethylene films for adsorption or covalent immobilization of trypsin: quantitative correlation between X-ray photoelectron spectroscopy data and enzyme activity. J Phys Chem B 115:10228–10238

    Article  Google Scholar 

  58. Bai Y, Koh CG, Boreman M, Juang Y-J, Tang IC, Lee LJ et al (2006) Surface modification for enhancing antibody binding on polymer-based microfluidic device for enzyme-linked immunosorbent assay. Langmuir 22:9458–9467

    Article  Google Scholar 

  59. Wilchek M, Miron T (2003) Oriented versus random protein immobilization. J Biochem Bioph Methods 55:67–70

    Article  Google Scholar 

  60. Wang C, Yan Q, Liu H-B, Zhou X-H, Xiao S-J (2011) Different EDC/NHS activation mechanisms between PAA and PMAA brushes and the following amidation reactions. Langmuir 27:12058–12068

    Article  Google Scholar 

  61. Sam S, Touahir L, Salvador Andresa J, Allongue P, Chazalviel JN, Gouget-Laemmel AC et al (2009) Semiquantitative study of the EDC/NHS activation of acid terminal groups at modified porous silicon surfaces. Langmuir 26:809–814

    Article  Google Scholar 

  62. Coad BR, Jasieniak M, Griesser SS, Griesser HJ (2013) Controlled covalent surface immobilisation of proteins and peptides using plasma methods. Surf Coat Technol 233:169–177

    Article  Google Scholar 

  63. Wang Z-H, Jin G (2004) Covalent immobilization of proteins for the biosensor based on imaging ellipsometry. J Immunol Methods 285:237–243

    Article  Google Scholar 

  64. Lu B, Smyth MR, O’Kennedy R (1996) Tutorial review. Oriented immobilization of antibodies and its applications in immunoassays and immunosensors. Analyst 121:29R–32R

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samira Hosseini .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hosseini, S., Vázquez-Villegas, P., Rito-Palomares, M., Martinez-Chapa, S.O. (2018). Step by Step with ELISA: Mechanism of Operation, Crucial Elements, Different Protocols, and Insights on Immobilization and Detection of Various Biomolecular Entities. In: Enzyme-linked Immunosorbent Assay (ELISA). SpringerBriefs in Applied Sciences and Technology(). Springer, Singapore. https://doi.org/10.1007/978-981-10-6766-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6766-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6765-5

  • Online ISBN: 978-981-10-6766-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics