On Stochastic Fishery Games with Endogenous Stage-Payoffs and Transition Probabilities

  • Reinoud Joosten
  • Llea Samuel
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 758)


We engineered a stochastic fishery game in which overfishing has a twofold effect: it gradually damages the fish stock inducing lower catches in states High and Low, and it gradually causes the system to spend more time in the latter state with lower landings.

To analyze the effects of this ‘double whammy’ technically, we demonstrate how to determine the set of jointly-convergent pure-strategy rewards supported by equilibria involving threats, under the limiting average reward criterion.


Stochastic games Limiting average rewards Endogenous transition probabilities Endogenous stage payoffs 


  1. 1.
    Amir, R.: Stochastic games in economics and related fields: an overview. In: Neyman, A., Sorin, S. (eds.) Stochastic Games and Applications. NATO Advanced Study Institute, Series D, pp. 455–470. Kluwer, Dordrecht (2003). doi: 10.1007/978-94-010-0189-2 CrossRefGoogle Scholar
  2. 2.
    Armstrong, M.J., Connolly, P., Nash, R.D.M., Pawson, M.G., Alesworth, E., Coulahan, P.J., Dickey-Collas, M., Milligan, S.P., O’Neill, M., Witthames, P.R., Woolner, L.: An application of the annual egg production method to estimate spawning biomass of cod (Gadus morhua L.), plaice (Pleuronectes platessa L.) and sole (Solea solea L.) in the Irish Sea. ICES J. Mar. Sci. 58, 183–203 (2001)CrossRefGoogle Scholar
  3. 3.
    Aumann, R.: Game engineering. In: Neogy, S.K., Bapat, R.B., Das, A.K., Parthasarathy, T. (eds.) Mathematical Programming and Game Theory for Decision Making, pp. 279–285. World Scientific, Singapore (2008)CrossRefGoogle Scholar
  4. 4.
    Bewley, T., Kohlberg, E.: The asymptotic theory of stochastic games. Math. Oper. Res. 1, 197–208 (1976a)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bewley, T., Kohlberg, E.: The asymptotic solution of a recursive equation occuring in stochastic games. Math. Oper. Res. 1, 321–336 (1976b)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Billingsley, P.: Probability and Measure. Wiley, New York (1986)MATHGoogle Scholar
  7. 7.
    Blackwell, D., Ferguson, T.S.: The big match. Ann. Math. Stat. 39, 159–163 (1968)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bulte, E.H.: Open access harvesting of wildlife: the poaching pit and conservation of endangered species. Agricult. Econ. 28, 27–37 (2003)CrossRefGoogle Scholar
  9. 9.
    Courchamp, F., Angulo, E., Rivalan, P., Hall, R.J., Signoret, L., Meinard, Y.: Rarity value and species extinction: the anthropogenic Allee effect. PLoS Biol. 4, 2405–2410 (2006)CrossRefGoogle Scholar
  10. 10.
    Cross, J.G., Guyer, M.J.: Social Traps. University of Michigan Press, Ann Arbor (1980)Google Scholar
  11. 11.
    Ehtamo, H., Hämäläinen, R.P.: On affine incentives for dynamic decision problems. In: Başar, T. (ed.) Dynamic Games and Applications in Economics, pp. 47–63. Springer, Heidelberg (1986). doi: 10.1007/978-3-642-61636-5_3 CrossRefGoogle Scholar
  12. 12.
    Ehtamo, H., Hämäläinen, R.P.: Incentive strategies and equilibria for dynamic games with delayed information. JOTA 63, 355–369 (1989)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Ehtamo, H., Hämäläinen, R.P.: A cooperative incentive equilibrium for a resource management problem. J. Econ. Dynam. Control 17, 659–678 (1993)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Ehtamo, H., Hämäläinen, R.P.: Credibility of linear equilibrium strategies in a discrete-time fishery management game. Group Decis. Negot. 4, 27–37 (1995)CrossRefGoogle Scholar
  15. 15.
    Flesch, J.: Stochastic Games with the Average Reward, Ph.D. Thesis Maastricht University (1998). ISBN 90-9012162-5Google Scholar
  16. 16.
    Forges, F.: An approach to communication equilibria. Econometrica 54, 1375–1385 (1986)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Gillette, D.: Stochastic games with zero stop probabilities. In: Dresher, M., et al. (eds.) Contributions to the Theory of Games III. Annals of Mathematics Studies, vol. 39, pp. 179–187. Princeton University Press, Princeton (1957)Google Scholar
  18. 18.
    Hall, R.J., Milner-Gulland, E.J., Courchamp, F.: Endangering the endangered: the effects of perceived rarity on species exploitation. Conserv. Lett. 1, 75–81 (2008)CrossRefGoogle Scholar
  19. 19.
    Hämäläinen, R.P., Haurie, A., Kaitala, V.: Equilibria and threats in a fishery management game. Optim. Control Appl. Methods 6, 315–333 (1985)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Hamburger, H.: N-person prisoner’s dilemma. J. Math. Psychol. 3, 27–48 (1973)MathSciNetMATHGoogle Scholar
  21. 21.
    Hardin, G.: The tragedy of the commons. Science 162, 1243–1248 (1968)CrossRefGoogle Scholar
  22. 22.
    Hart, S.: Nonzero-sum two-person repeated games with incomplete information. Math. Oper. Res. 10, 117–153 (1985)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Haurie, A., Krawczyk, J.B., Zaccour, G.: Games and Dynamic Games. World Scientific, Singapore (2012)CrossRefMATHGoogle Scholar
  24. 24.
    Heckathorn, D.D.: The dynamics and dilemmas of collective action. Am. Sociol. Rev. 61, 250–277 (1996)CrossRefGoogle Scholar
  25. 25.
    Herings, P.J.J., Predtetchinski, A.: Voting in Collective Stopping Games. GSBE Research Memorandum 13/14. Maastricht University, Maastricht (2012)Google Scholar
  26. 26.
    Hillis, J.F., Wheelan, B.J.: Fisherman’s time discounting rates and other factors to be taken into account in planning rehabilitation of depleted fisheries. In: Antona, M., et al. (eds.) Proceedings of the 6th Conference of the International Institute of Fisheries Economics and Trade, pp. 657–670. IIFET-Secretariat Paris (1994)Google Scholar
  27. 27.
    Hoffman, A.J., Karp, R.M.: On nonterminating stochastic games. Manage. Sci. 12, 359–370 (1966)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Hordijk, A., Vrieze, O.J., Wanrooij, G.L.: Semi-Markov strategies in stochastic games. Int. J. Game Theory 12, 81–89 (1983)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Joosten, R.: Dynamics, Equilibria, and Values. Ph.D. thesis 96–37. Faculty of Economics & Business Administration, Maastricht University (1996)Google Scholar
  30. 30.
    Joosten, R.: A note on repeated games with vanishing actions. Int. Game Theory Rev. 7, 107–115 (2005)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Joosten, R.: Small fish wars: a new class of dynamic fishery-management games. ICFAI J. Managerial Econ. 5, 17–30 (2007a)Google Scholar
  32. 32.
    Joosten, R.: Small fish wars and an authority. In: Prinz, A., et al. (eds.) The Rules of the Game: Institutions, Law, and Economics, pp. 131–162. LIT-Verlag, Berlin (2007b)Google Scholar
  33. 33.
    Joosten, R.: Social dilemmas, time preferences and technology adoption in a commons problem. J. Bioecon. 16, 239–258 (2014)CrossRefGoogle Scholar
  34. 34.
    Joosten, R.: Strong and weak rarity value: resource games with complex price-scarcity relationships. Dyn. Games Appl. 16, 97–111 (2016)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Joosten, R., Brenner, T., Witt, U.: Games with frequency-dependent stage payoffs. Int. J. Game Theory 31, 609–620 (2003)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Joosten, R., Meijboom, R.: Stochastic games with endogenous transitions (2017)Google Scholar
  37. 37.
    Joosten, R., Samuel, L.: On the computation of large sets of rewards in ETP-ESP-games with communicating states, Working Paper. University of Twente (2017)Google Scholar
  38. 38.
    Komorita, S.S., Parks, C.D.: Social Dilemmas. Westview Press, Boulder (1996)Google Scholar
  39. 39.
    Krawczyk, J.B., Tołwinski, B.: A cooperative solution for the three nation problem of exploitation of the southern bluefin tuna. IMA J. Math. Appl. Med. Biol. 10, 135–147 (1993)CrossRefMATHGoogle Scholar
  40. 40.
    Kurlansky, M.: Cod: A Biography of the Fish That Changed the World. Vintage, Canada (1998)Google Scholar
  41. 41.
    Levhari, D., Mirman, L.J.: The great fish war: an example using a dynamic Cournot-Nash solution. Bell J. Econ. 11, 322–334 (1980)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Long, N.V.: A Survey of Dynamic Games in Economics. World Scientific, Singapore (2010)CrossRefMATHGoogle Scholar
  43. 43.
    Mahohoma, W.: Stochastic games with frequency dependent stage payoffs, Master Thesis DKE 14–21. Maastricht University, Department of Knowledge Engineering (2014)Google Scholar
  44. 44.
    Marwell, G., Oliver, P.: The Critical Mass in Collective Action: A Micro-Social Theory. Cambridge University Press, Cambridge (1993)CrossRefGoogle Scholar
  45. 45.
    Messick, D.M., Brewer, M.B.: Solving social dilemmas: a review. Ann. Rev. Pers. Soc. Psychol. 4, 11–43 (1983)Google Scholar
  46. 46.
    Messick, D.M., Wilke, H., Brewer, M.B., Kramer, P.M., Zemke, P.E., Lui, L.: Individual adaptation and structural change as solutions to social dilemmas. J. Pers. Soc. Psychol. 44, 294–309 (1983)CrossRefGoogle Scholar
  47. 47.
    Mertens, J.F., Neyman, A.: Stochastic games. Int. J. Game Theory 10, 53–66 (1981)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Oosthuizen, E., Daan, N.: Egg fecundity and maturity of North Sea cod, gadus morhua: Netherlands. J. Sea Res. 8, 378–397 (1974)CrossRefGoogle Scholar
  49. 49.
    Ostrom, E.: Governing the Commons. Cambridge University Press, Cambridge (1990)CrossRefGoogle Scholar
  50. 50.
    Ostrom, E., Gardner, R., Walker, J.: Rules, Games, and Common-Pool Resources. Michigan University Press, Ann Arbor (1994)CrossRefGoogle Scholar
  51. 51.
    Platt, J.: Social traps. Am. Psychol. 28, 641–651 (1973)CrossRefGoogle Scholar
  52. 52.
    Rose, G.A., Bradbury, I.R., deYoung, B., Fudge, S.B., Lawson, G.L., Mello, L.G.S., Robichaud, D., Sherwood, G., Snelgrove, P.V.R., Windle, M.J.S.: Rebuilding Atlantic cod: lessons from a spawning ground in Coastal Newfoundland. In: Kruse, G.H., et al. (eds.) Resiliency of gadid stocks to fishing and climate change, 24th Lowell Wakefield Fisheries Symposium, pp. 197–219 (2008). ISBN 978-1-56612-126-2Google Scholar
  53. 53.
    Schoenmakers, G.M.: The Profit of Skills in Repeated and Stochastic Games. Ph.D Thesis Maastricht University (2004). ISBN 90 90184473Google Scholar
  54. 54.
    Shapley, L.: Stochastic games. Proc. Natl. Acad. Sci. U.S.A. 39, 1095–1100 (1953)MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    Steg, L.: Motives and behavior in social dilemmas relevant to the environment. In: Hendrickx, L., Jager, W., Steg, L. (eds.) Human Decision Making and Environmental Perception: Understanding and Assisting Human Decision Making in Real-Life Settings, pp. 83–102. University of Groningen, Groningen (2003)Google Scholar
  56. 56.
    Thuijsman, F.: Optimality and Equilibria in Stochastic Games, CWI-Tract 82. Centre for Mathematics and Computer Science, Amsterdam (1992)MATHGoogle Scholar
  57. 57.
    Thuijsman, F., Vrieze, O.J.: The power of threats in stochastic games. In: Bardi, M., et al. (eds.) Stochastic and Differential Games, Theory and Numerical Solutions, pp. 343–358. Birkhauser, Boston (1998)Google Scholar
  58. 58.
    Tołwinski, B.: A concept of cooperative equilibrium for dynamic games. Automatica 18, 431–441 (1982)MathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    Tołwinski, B., Haurie, A., Leitmann, G.: Cooperative equilibria in differential games. JOTA 119, 182–202 (1986)MathSciNetMATHGoogle Scholar
  60. 60.
    Van Damme, E.E.C.: Stability and Perfection of Nash Equilibria. Springer, Heidelberg (1992). doi: 10.1007/978-3-642-58242-4 MATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.University of TwenteEnschedeThe Netherlands

Personalised recommendations