Non-cooperative Monomino Games

  • Judith Timmer
  • Harry Aarts
  • Peter van Dorenvanck
  • Jasper Klomp
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 758)


In this paper we study monomino games. These are two player games played on a rectangular board with R rows and C columns. The game pieces are monominoes, which cover exactly one cell of the board. One by one each player selects a column of the board, and places a monomino in the lowest uncovered cell. This generates a payoff for the player. The game ends if all cells are covered by monominoes. The goal of each player is to place his monominoes in such a way that his total payoff is maximized. We derive the equilibrium play and corresponding payoffs for the players.


Monomino games Non-cooperative games Nash equilibrium Pure strategies 

2010 AMS Subject classification:

91A10 91A05 


  1. 1.
    Albert, M., Nowakowski, R.J., Wolfe, D.: An Introduction to Combinatorial Game Theory. A K Peters, Wellesley (2007)MATHGoogle Scholar
  2. 2.
    Borm, P., Hamers, H., Hendrickx, R.: Operations research games: a survey. TOP 9(2), 139–199 (2001)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    De Schuymer, B., De Meyer, H., De Baets, B.: Optimal strategies for equal-sum dice games. Discrete Appl. Math. 154, 2565–2576 (2006)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    van Dorenvanck, P., Klomp, J.: Optimale strategieën in dominospelen. M.Sc. thesis, University of Twente, Enschede, The Netherlands (2010). (In Dutch)Google Scholar
  5. 5.
    Fraenkel, A.S.: Combinatorial games: Selected bibliography with a succinct gourmet introduction. The Electronic Journal of Combinatorics, Dynamic Surveys, DS2 (2009)Google Scholar
  6. 6.
    Gardner, M.: Dominono. Comput. Math. Appl. 39, 55–56 (2000)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Nash, J.: Non-cooperative games. Ann. Math. 54, 289–295 (1951)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Orman, H.K.: Pentominoes: a first player win. In: Nowakowski, R.J. (ed.) Games of No Chance, MSRI Publications, vol. 29, pp. 339–344. Cambridge University Press, Cambridge (1996)Google Scholar
  9. 9.
    Peters, H.: Game Theory: A Multi-leveled Approach. Springer, Heidelberg (2015). doi: 10.1007/978-3-540-69291-1 CrossRefMATHGoogle Scholar
  10. 10.
    Rawsthorne, D.A.: Tiling complexity of small \(N\)-ominoes (\(N<10\)). Discrete Math. 70(1), 71–75 (1988)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Judith Timmer
    • 1
  • Harry Aarts
    • 1
  • Peter van Dorenvanck
    • 1
  • Jasper Klomp
    • 1
  1. 1.Department of Applied Mathematics, Faculty of Electrical Engineering, Mathematics, and Computer ScienceUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations