Advertisement

Edgeworth Equilibria of Economies and Cores in Multi-choice NTU Games

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 758)

Abstract

In this paper, we derive an extension of the payoff-dependent balanced core existence theorem by Bonnisseau and Iehlé [Games Econ. Behav. 61 (2007) 1–26] to multi-choice NTU games which implies a multi-choice extension of Scarf’s core existence theorem.

Keywords

Cores Edgeworth equilibrium Balanced collections Balancedness Payoff-dependent balancedness NTU games Multi-choice NTU games 

JEL Classification:

C60 C71 

References

  1. 1.
    Alipraantis, C.D., Brown, D.J., Burkinshaw, O.: Edgeworth equilibria. Econometrica 55, 1109–1137 (1987)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Billera, L.J.: Some theorems on the core of an n-person game without side-payments. SIAM J. Appl. Math. 18, 567–579 (1970)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bondareva, O.N.: Some applications of linear programming methods to the theory of cooperative games. Problemy Kibernetiki 10, 119–139 (1963). (in Russian)MathSciNetMATHGoogle Scholar
  4. 4.
    Bonnisseau, J.M., Iehlé, V.: Payoff-dependent balancedness and cores. Games Econ. Behav. 61, 1–26 (2007)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Branzei, R., Dimitrov, D., Tijs, S.: Models in Cooperative Game Theory, 2nd edn. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-77954-4 MATHGoogle Scholar
  6. 6.
    Debreu, G., Scarf, H.: A limit theorem on the core of an economy. Int. Econ. Rev. 4, 235–246 (1963)CrossRefMATHGoogle Scholar
  7. 7.
    Florenzano, M.: On the non-emptiness of the core of a coalition production economy without ordered preferences. J. Math. Anal. Appl. 141, 484–490 (1989)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Florenzano, M.: Edgeworth equilibria, fuzzy core, and equilibria of a production economy without ordered preferences. J. Math. Anal. Appl. 153, 18–36 (1990)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Hsiao, C., Raghavan, T.: Monotonicity and dummy free property for multi-choice cooperative games. Int. J. Game Theory 21, 301–312 (1992)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Hsiao, C., Raghavan, T.: Shapley value for multi-choice cooperative games (I). Games Econ. Behav. 5, 240–256 (1993)CrossRefMATHGoogle Scholar
  11. 11.
    Huang, Y.A., Li, W.H.: The core of multi-choice NTU games. Math. Methods Oper. Res. 61, 33–40 (2005)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Inoue, T.: Representation of non-transferable utility games by coalition production economies. J. Math. Econ. 49, 141–149 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Liu, J., Liu, X.: Existence of edgeworth and competitive equilibria and fuzzy cores in coalition production economies. Int. J. Game Theory 43, 975–990 (2014)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    van den Nouweland, A., Tijs, S., Potters, J., Zarzuelo, J.: Cores and related solution concepts for multi-choice games. Math. Methods Oper. Res. 41, 289–311 (1995)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Predtetchinski, A., Herings, P.J.J.: A necessary and sufficient condition for non-emptiness of the core of a non-transferable utility game. J. Econ. Theory 116, 84–92 (2004)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Scarf, H.: The core of an N-person game. Econometrica 35, 50–69 (1967)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Shapley, L.S.: On balanced sets and cores. Naval Res. Logist. Q. 14, 453–460 (1967)CrossRefGoogle Scholar
  18. 18.
    Shapley, L.S., Vohra, R.: On Kakutani’s fixed point theorem, the K-K-M-S theorem and the core of a balanced game. Econ. Theory 1, 108–116 (1991)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Jiuqiang Liu
    • 1
    • 2
  • Xiaodong Liu
    • 1
  • Yan Huang
    • 1
  • Wenbo Yang
    • 3
  1. 1.School of Management EngineeringXi’an University of Finance and EconomicsXi’anPeople’s Republic of China
  2. 2.Department of MathematicsEastern Michigan UniversityYpsilantiUSA
  3. 3.Department of Trace ExaminationNational Police University of ChinaShenyangPeople’s Republic of China

Personalised recommendations