Advertisement

A Cooperative Game Approach to Author Ranking in Coauthorship Networks

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 758)

Abstract

In this paper, we propose a cooperative game approach to the issue of author ranking in coauthorship networks. We first construct three weighted coauthorship networks from different perspectives and define three cooperative games according to the corresponding coauthorship networks. Then we use the core and the Shapley value as allocation rules for the games. Finally, considering the contribution level of the authors to their papers, we give the weighted Shapley value and a new value as the allocation rules. These allocation rules can be used to rank the authors in coauthorship networks.

Keywords

Cooperative game Coauthorship network Author ranking Core Shapley value Weighted shapley value 

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 71671140 and 71271171), and sponsored by the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University (Grant No. Z2017191).

References

  1. 1.
    Acedo, F.J., Barroso, C., Casanueva, C., Galán, J.L.: Co-authorship in management and organizational studies: an empirical and network analysis. J. Manage. Stud. 43(5), 957–983 (2006). doi: 10.1111/j.1467-6486.2006.00625.x CrossRefGoogle Scholar
  2. 2.
    Borm, P., Owen, G., Tijs, S.: On the position value for communication situations. SIAM J. Discrete Math. 5, 305–320 (1992). doi: 10.1137/0405023 MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Casajus, A.: The position value is the myerson value, in a sense. Int. J. Game Theory 36, 47–55 (2007). doi: 10.1007/s00182-007-0086-1 MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ding, Y.: Scientific collaboration and endorsement: network analysis of coauthorship and citation networks. J. Informetrics 5(1), 187–203 (2011). doi: 10.1016/j.joi.2010.10.008 CrossRefGoogle Scholar
  5. 5.
    Estrada, E., Rodrŕguez-Velázquez, J.A.: Subgraph centrality and clustering in complex hyper-networks. Phys. A 364, 581–594 (2006). doi: 10.1016/j.physa.2005.12.002 MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ming, J.R., Dang, Y.J.: Comparative study of author collaboration network based on scientific contribution degree. Digtial Libr. Forum 1, 34–40 (2016). doi: 10.3772/j.issn.1673-2286.2016.1.005 Google Scholar
  7. 7.
    Narayanam, R., Narahari, Y.: A shapley value-based approach to discover influential nodes in social networks. IEEE Trans. Autom. Sci. Eng. 8(1), 130–147 (2011). doi: 10.1109/TASE.2010.2052042 CrossRefGoogle Scholar
  8. 8.
    Newman, M.: Scientific collaboration networks. I. network construction and fundamental results. Phys. Rev. E. 64, 016131 (2001a). doi: 10.1103/PhysRevE.64.016131
  9. 9.
    Newman, M.: Scientific collaboration networks. II. shortest paths, weighted networks, and centrality. Phys. Rev. E. 64, 016132 (2001b). doi: 10.1103/PhysRevE.64.016132
  10. 10.
    Newman, M.: Coauthorship networks and patterns of scientific collaboration. Proc. Nat. Acad. Sci. U.S.A. 101, 5200–5205 (2004). doi: 10.1073/pnas.0307545100 CrossRefGoogle Scholar
  11. 11.
    Nouweland, A.V.D., Borm, P., Tijs, S.: Allocation rules for hypergraph communication situations. Int. J. Game Theory 20, 255–268 (1992). doi: 10.1007/BF01253780 MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Shan, E., Guang, Z.: Characterizations of the position value for hypergraph communication situations. Working PaperGoogle Scholar
  13. 13.
    Shapley, L.: A value for n-person games. In: Tucher, A., Kuhn, H. (eds.) Contributions to the Theory of Games II, pp. 307–317. Princeton University Press, Princeton (1953). doi: 10.1017/CBO9780511528446.003
  14. 14.
    Xie, Z., Ouyang, Z., Li, J.: A geometric graph model for coauthorship networks. J. Informetrics 10(1), 299–311 (2016). doi: 10.1016/j.joi.2016.02.001 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Applied MathematicsNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations