Advertisement

Computing the Shapley Value of Threshold Cardinality Matching Games

  • Lei Zhao
  • Xin Chen
  • Qizhi Fang
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 758)

Abstract

The Shapley value is one of the most important solutions on the scheme of distributing the profits among agents in cooperative games. In this paper, we discuss the computational and complexity issues on the Shapley value in a particular multi-agent domain, a threshold cardinality matching game (TCMG). We show that the Shapley value can be calculated in polynomial time when graphs are restricted to some special graphs, such as linear graphs and the graphs having clique or coclique modules decomposition. For general graphs, we prove that calculating the Shapley value is #P-complete when the threshold is a constant.

Keywords

Shapley value Threshold matching game #P-complete Efficient algorithm 

References

  1. 1.
    Aziz, H., Brandt, F., Harrenstein, P.: Monotone cooperative games and their threshold versions. In: Proceedings of the 9th International Conference on Autonormous Agents and Multiagent Systems, vol. 1, pp. 1107–1114 (2010)Google Scholar
  2. 2.
    Aziz, H., Keijzer, B.D.: Shapley meets Shapley. In: 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014), Lyon, France, pp. 99–111 (2014)Google Scholar
  3. 3.
    Bacher, R.: Determinants of matrices related to the Pascal triangle. J. de thorie des nombres de Bordeaux 14, 19–41 (2002)MathSciNetMATHGoogle Scholar
  4. 4.
    Biro, R., Kern, W., Paulusma, D.: Computing solutions for matching games. Int. J. Game Theory 41(1), 75–90 (2012)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bousquet, N.: The Shapley value of matching games on trees. ManuscriptGoogle Scholar
  6. 6.
    Deng, X., Papadimitriou, C.H.: On the complexity of cooperative solution concepts. Math. Oper. Res. 19(2), 257–266 (1994)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Deng, X., Ibaraki, T., Nagamochi, H.: Algorithmic aspects of the core of combinatorial optimization games. Math. Oper. Res. 24(3), 751–766 (1999)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Elkind, E., Goldberg, L.A., Goldberg, P., Wooldridge, M.: Computational complexity of weighted threshold games. In: Proceedings of the National Conference on Artificial Intelligence, vol. 22, p. 718 (2007)Google Scholar
  9. 9.
    Fang, Q., Li, B., Sun, X., Zhang, J., Zhang, J.: Computing the least-core and nucleolus for threshold cardinality matching games. In: Liu, T.-Y., Qi, Q., Ye, Y. (eds.) WINE 2014. LNCS, vol. 8877, pp. 474–479. Springer, Cham (2014). doi: 10.1007/978-3-319-13129-0_42 Google Scholar
  10. 10.
    Kalai, E., Zemel, E.: Totally balanced games and games of flow. Math. Oper. Res. 7(3), 476–478 (1982)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kern, W., Paulusma, D.: Matching games: the least-core and the nucleolus. Math. Oper. Res. 28(2), 294–308 (2003)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Matsui, Y., Matsui, T.: A survey of algorithms for calculating power indices of weighted majority games. J. Oper. Res. Soc. Japan 43, 71–86 (2000)MathSciNetMATHGoogle Scholar
  13. 13.
    Matsui, Y., Matsui, T.: NP-completeness for calculating power indices of weighted majority games. Theoret. Comput. Sci. 263(1), 305–310 (2001)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Provan, J.S., Ball, M.O.: The complexity of counting cuts and of computing the probability that a graph is connected. SIAM J. Comput. 12(4), 777–788 (1983)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Roy, S.K., Mula, P., Mondal, S.N.: A new solution concept in credibilistic game. CiiT J. Fuzzy Syst. 3(3), 115–120 (2011)Google Scholar
  16. 16.
    Shapley, L.S.: A value for n-person games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games, vol. II, pp. 307–317. Princeton University Press (1953)Google Scholar
  17. 17.
    Shapley, L.S., Shubik, M.: The assignment game I: the core. Int. J. Game Theory 1, 111–130 (1972)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Solymosi, T., Raghavan, T.E.S.: An algorithm for finding the nucleolus of assignment games. Int. J. Game Theory 23(2), 119–143 (1994)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Ueda, S., Kitaki, M., Iwasaki, A., Yokoo, M.: Concise characteristic function representations in coalitional games based on agent types. In: Walsh, T. (ed.) Proceeding of 22nd IJCAI, pp. 393–399. AAAI Press (2011)Google Scholar
  20. 20.
    Winter, E.: The Shapley value. In: Aumann, R.J., Hart, S. (eds.) Handbook of Game Theory, vol. 3, pp. 2025–2054. Elsevier, Amsterdam (2002)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.School of Mathematical SciencesOcean University of ChinaQingdaoChina

Personalised recommendations