Advertisement

n-Person Credibilistic Non-cooperative Game with Fuzzy Payoffs

  • Chunqiao Tan
  • Zhongwei Feng
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 758)

Abstract

In real game situations, the players are often lack of the information about their opponents’ or even their own payoffs. The existing literature on non-cooperative games with uncertain payoffs just focused on two-person zero-sum games or bimatrix games. In this paper, we consider a n-person non-cooperative game with fuzzy payoffs. First, based on credibility theory, three credibilistic criteria are introduced to define the behavior preferences of players in different game situations. Then, three solution concepts of credibilistic equilibria and their existence theorems are proposed. Finally, three sufficient and necessary conditions are presented for finding the credibilistic equilibrium strategies to illustrate the usefulness of the theory developed in this paper.

Keywords

n-person credibilistic game Credibility theory Fuzzy payoff Credibility measure 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 71671188 and 71271217,), and Natural Science Foundation of Hunan Province, China (No. 2016JJ1024).

References

  1. Aumann, R.J.: Subjectivity and correlation in randomized strategies. J. Math. Econ. 1(1), 67–96 (1974)MathSciNetCrossRefMATHGoogle Scholar
  2. Berg, J.: Statistical mechanics of random two-player games. Phys. Rev. E 61(3), 2327 (2000)MathSciNetCrossRefGoogle Scholar
  3. Bhaumik, A., Roy, S.K., Li, D.F.: Analysis of triangular intuitionistic fuzzy matrix games using robust ranking. J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-161631
  4. Blau, R.A.: Random-payoff two-person zero-sum games. Oper. Res. 22(6), 1243–1251 (1974)MathSciNetCrossRefMATHGoogle Scholar
  5. Campos, L.: Fuzzy linear programming models to solve fuzzy matrix games. Fuzzy Sets Syst. 32(3), 275–289 (1989)MathSciNetCrossRefMATHGoogle Scholar
  6. Cassidy, R.G., Field, C.A., Kirby, M.J.L.: Solution of a satisficing model for random payoff games. Manage. Sci. 19(3), 266–271 (1972)MathSciNetCrossRefMATHGoogle Scholar
  7. Cevikel, A.C., Ahlatçıoğlu, M.: Solutions for fuzzy matrix games. Comput. Math Appl. 60(3), 399–410 (2010)MathSciNetCrossRefMATHGoogle Scholar
  8. Chandra, S., Aggarwal, A.: On solving matrix games with pay-offs of triangular fuzzy numbers: Certain observations and generalizations. Eur. J. Oper. Res. 246(2), 575–581 (2015)MathSciNetCrossRefMATHGoogle Scholar
  9. Charnes, A., Kirby, M.J., Raike, W.M.: Zero-zero chance-constrained games. Theory Probab. Appl. 13(4), 628–646 (1968)MathSciNetCrossRefMATHGoogle Scholar
  10. Chen, Y., Liu, Y., Wu, X.: A new risk criterion in fuzzy environment and its application. Appl. Math. Model. 36(7), 3007–3028 (2012)MathSciNetCrossRefMATHGoogle Scholar
  11. Das, C.B., Roy, S.K.: Fuzzy based GA for entropy bimatrix goal game. Int. J. Uncertainty Fuzziness and Knowl. Based Syst. 18(6), 779–799 (2010)MathSciNetCrossRefMATHGoogle Scholar
  12. Das, C.B., Roy, S.K.: Fuzzy based GA to multi-objective entropy bimatrix game. Opsearch 50(1), 125–140 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. Ein-Dor, L., Kanter, I.: Matrix games with nonuniform payoff distributions. Physica A Stat. Mech. Appl. 302(1), 80–88 (2001)MathSciNetCrossRefMATHGoogle Scholar
  14. Gao, J., Liu, B.: Fuzzy multilevel programming with a hybrid intelligent algorithm. Comput. Math Appl. 49(9), 1539–1548 (2005)MathSciNetCrossRefMATHGoogle Scholar
  15. Gao, J.: Credibilistic game with fuzzy information. J. Uncertain Syst. 1(1), 74–80 (2007)Google Scholar
  16. Gao, J., Liu, Z.Q., Shen, P.: On characterization of credibilistic equilibria of fuzzy-payoff two-player zero-sum game. Soft. Comput. 13(2), 127–132 (2009)CrossRefMATHGoogle Scholar
  17. Gao, J., Yu, Y.: Credibilistic extensive game with fuzzy payoffs. Soft Comput. 17(4), 557–567 (2013)CrossRefMATHGoogle Scholar
  18. Gao, J., Yang, X.: Credibilistic bimatrix game with asymmetric information: Bayesian optimistic equilibrium strategy. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 21(supp01), 89–100 (2013)MathSciNetCrossRefMATHGoogle Scholar
  19. Harsanyi, J.C.: Ageneral theory of rational behavior in game situations. Econometrica 34, 613–634 (1966)MathSciNetCrossRefMATHGoogle Scholar
  20. Harsanyi, J.C.: Games with incomplete information played by ‘Bayesian’ player, Part I. Basic Model. Manage Sci. 14, 159–182 (1967)MATHGoogle Scholar
  21. Kuhn, H.W.: Extensive games. Proc. Natl. Acad. Sci. 36(10), 570–576 (1950)MathSciNetCrossRefMATHGoogle Scholar
  22. Kuhn, H.W.: Extensive games and the problem of information. Contrib. Theory Games 2(28), 193–216 (1953)MathSciNetMATHGoogle Scholar
  23. Li, D.F.: Linear programming approach to solve interval-valued matrix games. Omega 39(6), 655–666 (2011)CrossRefGoogle Scholar
  24. Li, X., Wang, D., Li, K., Gao, Z.: A green train scheduling model and fuzzy multi-objective optimization algorithm. Appl. Math. Model. 37(4), 2063–2073 (2013)MathSciNetCrossRefMATHGoogle Scholar
  25. Liang, R., Yu, Y., Gao, J., Liu, Z.Q.: N-person credibilistic strategic game. Front. Comput. Sci. China 4(2), 212–219 (2010)CrossRefMATHGoogle Scholar
  26. Liu, B.: Theory and Practice of Uncertain Programming. Physica-Verlag, Heidelberg (2002). doi: 10.1007/978-3-7908-1781-2 CrossRefMATHGoogle Scholar
  27. Liu, B., Liu, Y.: Expected value of fuzzy variable and fuzzy expected value models, IEEE Trans. Fuzzy Systems 10, 445–450 (2002)CrossRefGoogle Scholar
  28. Liu, Y., Liu, B.: Expected value operator of random fuzzy variable and random fuzzy expected value models. Int. J. Uncertain. Fuzziness Knowledge-Based Systems 11(2), 195–215 (2003)MathSciNetCrossRefMATHGoogle Scholar
  29. Liu, B.: Uncertainty Theory. Springer-Verlag, Berlin (2004). doi: 10.1007/978-3-540-89484-1 CrossRefGoogle Scholar
  30. Liu, B.: Uncertainty Theory, 2nd edn. Springer-Verlag, Berlin (2007). doi: 10.1007/978-3-540-73165-8 MATHGoogle Scholar
  31. Liu, Y., Wu, X., Hao, F.: A new Chance-Variance optimization criterion for portfolio selection in uncertain decision systems. Expert Syst. Appl. 39(7), 6514–6526 (2012)CrossRefGoogle Scholar
  32. Maeda, T.: Characterization of the equilibrium strategy of the bimatrix game with fuzzy payoff. J. Math. Anal. Appl. 251(2), 885–896 (2000)MathSciNetCrossRefMATHGoogle Scholar
  33. Maeda, T.: On characterization of equilibrium strategy of two-person zero-sum games with fuzzy payoffs. Fuzzy Sets Syst. 139(2), 283–296 (2003)MathSciNetCrossRefMATHGoogle Scholar
  34. Mula, P., Roy, S.K., Li, D.F.: Birough programming approach for solving bi-matrix games with birough payoff elements. J Intell. Fuzzy Syst. 29(2), 863–875 (2015)MathSciNetCrossRefMATHGoogle Scholar
  35. Nan, J.X., Zhang, M.J., Li, D.F.: A methodology for matrix games with payoffs of triangular intuitionistic fuzzy number. J. Intell. Fuzzy Syst. 26(6), 2899–2912 (2014)MathSciNetMATHGoogle Scholar
  36. Nash, J.: Equilibrium points in n-person games. Proc. Natl. Acad. Sci. 36, 48–49 (1950)MathSciNetCrossRefMATHGoogle Scholar
  37. Nash, J.: Non-cooperative games. Ann Math. 54, 286–295 (1951)MathSciNetCrossRefMATHGoogle Scholar
  38. Nishazaki, I., Sakawa, M.: Fuzzy and Multiobjective Games for Conflict Resolution. Studies in Fuzziness and Soft Computing, vol. 64. Springer, Heidelberg (2001). doi: 10.1007/978-3-7908-1830-7 CrossRefGoogle Scholar
  39. Roberts, D.P.: Nash equilibria of Cauchy-random zero-sum and coordination matrix games. Int. J. Game Theory 34(2), 167–184 (2006)MathSciNetCrossRefMATHGoogle Scholar
  40. Roy, S.K.: Game Theory Under MCDM and Fuzzy Set Theory: Some Problems in Multi-criteria Decision Making Using Game Theoretic Approach. VDM Publishing, Germany (2010)Google Scholar
  41. Roy, S.K., Mula, P., Mondal, S.N.: A new solution concept in credibilistic game. CiiT J. Fuzzy Syst. 3(3), 115–120 (2011)Google Scholar
  42. Roy, S.K., Mula, P.: Bi-matrix game in bifuzzy environment. J. Uncertainty Anal. Appl. 1, 11 (2013). doi: 10.1186/2195-5468-1-11 CrossRefGoogle Scholar
  43. Roy, S.K., Mula, P.: Solving matrix game with rough payoffs using genetic algorithm. Oper. Res. 16(1), 117–130 (2016)Google Scholar
  44. Shen, P., Gao, J.: Coalitional game with fuzzy payoffs and credibilistic core. Soft. Comput. 15(4), 781–786 (2010)CrossRefMATHGoogle Scholar
  45. Vijay, V., Chandra, S., Bector, C.R.: Matrix games with fuzzy goals and fuzzy payoffs. Omega 33(5), 425–429 (2005)CrossRefGoogle Scholar
  46. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, New York (1944)MATHGoogle Scholar
  47. Yang, L., Li, K., Gao, Z., Li, X.: Optimizing trains movement on a railway network. Omega. 40(5), 619–633 (2012)CrossRefGoogle Scholar
  48. Zadeh, L.A.: Fuzzy sets. Inf. control 8(3), 338–353 (1965)CrossRefMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.School of BusinessCentral South UniversityChangshaChina

Personalised recommendations