Skip to main content

Fly Ash-Induced Metabolic Adaptations in Three Ferns

  • Chapter
  • First Online:
Plant Adaptation Strategies in Changing Environment
  • 1102 Accesses

Abstract

Three fern species, namely, Pteris vittata L, Ampelopteris prolifera (Retz.) Copel., and Diplazium esculentum (Retz.) Sw., were grown on three different amendments of fly ash (FA) with garden soil (GS), viz., 100% GS as control, 50% FA+50% GS, and 100% FA. Their growth, metal accumulation, and response to antioxidants were evaluated. It was observed that all of these species accumulated significant amount of metals in their fronds and rhizomes (including rhizoids), while the amount of metal being accumulated by each fern varied. Results revealed that there was a significant increase in their biomass and photosynthetic pigments, for all the test species grown on 50% FA-amended GS in comparison to control; however, it further decreased in ferns grown on 100% FA, indicating that 50% FA amendment did not generate oxidative stress in ferns as well as it seems favorable substratum for fern growth.

Furthermore, while the activity of antioxidant enzymes such as melanoaldehydes (MDA), superoxide dismutase (SOD), ascorbate peroxidase (APX), and guaiacol peroxidase (GPX) increased to a considerable extent in 50% FA amendment, it was found to be maximum in the case of 100% FA amendment. In all the species, the fronds accumulated more metals than rhizomes; they also experienced more oxidative stress as the activities of antioxidant enzymes were observed to be higher in frond’s biomass. Overall, the results of the experiment showed fly ash-induced metabolic adaptation in these ferns and further utility of these species in phytoremediation of toxic metals from fly ash as well as ecorestoration of fly ash landfills with the same species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen SE, Grimsha WHM, Parkinson JA, Quarnby C (1974) Chemical analysis of ecological materials. Blackwell Scientific Publisher, Oxford

    Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplast, polyphenol/oxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44 (1):276–287

    Google Scholar 

  • Cao X, Ma LQ, Tu C (2004) Antioxidant responses to arsenic in the arsenic hyperaccumulator Chinese brake fern (Pteris vittata L.) Environ Pollut 128:463–468

    Article  Google Scholar 

  • Castillo FJ (1986) Extracellular peroxidases as markers of stress? In: Grepin H, Penel C, Gaspar T (eds) Molecular and physiological aspects of plant peroxidases. University of Geneva Press, Geneva, pp 419–426

    Google Scholar 

  • Dexbury AC, Yentch CS (1956) Plankton pigment monograph. J Mar Res 5:93–101

    Google Scholar 

  • Feyiga OA, Ma LQ, Xinde C, Rathinasabapathi B (2004) Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pteris vittata L. Environ Pollut 132:289–296

    Article  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1987) Phytochelatins, a class of heavy metal binding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci U S A 84:439–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta M, Cuypers H, Vangronsveld H, Clijsters (1999) Copper effects the enzymes of the ascorbate-glutathione cycle and its related metabolites in the roots of Phaseolus vulgaris. Physiologiqua Plant 106:262–267

    Article  CAS  Google Scholar 

  • Gupta DK, Rai UN, Sinha S, Tripathi RD, Nautiyal BD, Rai P, Inouhe M (2004) Role of rhizobium (CA-1) inoculation in increasing growth and metal accumulation in Cicer arietinum L. growing under fly ash stress condition. Bull Environ Contam Toxicol 73:424–431

    Article  CAS  PubMed  Google Scholar 

  • Gupta AK, Dwivedi S et al (2007) Metal accumulation and growth performance of Phaseolus vulgaris grown in fly ash amended soil. Bioresour Technol 98:3404–3407

    Article  CAS  PubMed  Google Scholar 

  • Halliwell H (1982) Ascorbic acid and the illuminated chloroplast. In: Seib PA, Tolbert BM (eds) Ascorbic acid: chemistry, metabolism and uses. American Chemical Society, Washington, DC, pp 263–274

    Chapter  Google Scholar 

  • Hartley-Whitakar J, Ainsworth G, Vooijs R, Ten WB, Schat H, Mehrag AA (2001) Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus. Plant Physiol 126:299–306

    Article  Google Scholar 

  • Haynes RJ (2009) Reclamation and revegetation of fly ash disposal sites – challenges and research needs. J Environ Manag 90:43–53

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast 1 kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hemeda HM, Klein BP (1990) Effects of naturally occurring anti-oxidants on peroxidase activity of vegetable extracts. J Food Sci 55:184–185

    Article  CAS  Google Scholar 

  • Hewitt EJ (1998) The role of mineral elements in the activity of plant enzymes. In: Ruhl W (ed) Hand buch der pfflanzen physiologie, vol IV. Springer, Berlin, p 427

    Google Scholar 

  • Honjo T, Suganuma H, Satomi N (1980) The vegetation of the pollution areas caused by the lead title in Kanazawa Castle. J Phytogeogr Taxon 27:70–73

    Google Scholar 

  • Jambhulkar HP, Juwarkar AA (2009) Assessment of bioaccumulation of heavy metals by different plant species grown on fly ash dump. Ecotoxicol Environ Saf 72:1122–1128

    Article  CAS  PubMed  Google Scholar 

  • Khan MR, Khan MW (1996) The effect of fly ash on plant growth and yield of tomato. Environ Pollut 92:105–111

    Article  CAS  PubMed  Google Scholar 

  • Klien DH, Andew AW et al (1995) Pathways of thirty seven trace elements through coal fired power plants. Environ Sci Technol 9:973–979

    Article  Google Scholar 

  • Kumar A, Vajpayee P, Ali MB, Tripathi RD, Singh N, Rai UN, Singh SN (2002) Biochemical responses of Cassia siamea Lamk. grown on coal combustion residue (fly ash). Bull Environ Contam Toxicol 68:675–683

    Article  CAS  PubMed  Google Scholar 

  • Kumari A, Lal B, Pakade YB, Chand P (2011) Assessment of bioaccumulation of heavy metals by Pteris vittata L. growing in the vicinity of fly ash. Int J Phytoremediation 13:779–787

    Article  CAS  PubMed  Google Scholar 

  • Kumari A, Pandey VC, Rai UN (2013) Feasibility of fern Thelypteris dentata for revegetation of coal fly ash landfills. J Geochem Explor 128:147–152

    Article  CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y (2001a) A fern that hyperaccumulates arsenic. Nature 409:579

    Article  CAS  PubMed  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y (2001b) A fern that hyperaccumulates arsenic-addendum. Nature 410:411–438

    Article  Google Scholar 

  • Mehra A, Farago ME, Banerjee DK (1998) Impact of fly ash from coal fired station in Delhi, with particular reference to metal contamination. Environ Monit Assess 50:15–35

    Article  CAS  Google Scholar 

  • Mehrag AA (2002) Variation in arsenic accumulation/hyperaccumulation in ferns and their allies. New Phytol 157:25–31

    Article  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nelson DW, Sommer LE (1982) Total carbon, organic carbon, and organic matter. In: Page AL (ed) Methods of soil analysis, ASA Monogr 9 (2), 2nd edn. American Society of Agronomy, Madison, pp 539–579

    Google Scholar 

  • Oleson SR, Sommers LE (1982) Phosphorus. In: Page AL, Miller RH, Keene DR (eds) Methods of soil analysis, Part 2 Chemical and Microbiological. Properties ASA, Madison, pp 403–427

    Google Scholar 

  • Pandey VC (2012) Invasive species based efficient green technology for phytoremediation of fly ash deposits. J Geochem Explor 123:13–18

    Article  CAS  Google Scholar 

  • Pandey VC, Singh N (2010) Impact of fly ash incorporation in soil systems. Agric Ecosyst Environ 136:16–27

    Article  Google Scholar 

  • Pandey VC, Singh JS, Kumar A, Tewari DD (2010) Accumulation of heavy metals by chickpea grown in FA treated soil: effect on antioxidants. Clean (Weinh) 38:1116–1123

    CAS  Google Scholar 

  • Piper CS (1966) Soil and plant analysis. Inter Science, New York

    Google Scholar 

  • Rai UN, Pandey K, Sinha S, Singh A, Saxena R, Gupta DK (2004) Revegetating fly-ash landfills with Prosopis juliflora L. impact of different amendments and rhizobium inoculation. Environ Int 30:293–300

    Article  CAS  PubMed  Google Scholar 

  • Ram LC, Jha SK, Tripathi RC, Masto RE, Selvi VA (2008) Remediation of fly ash landfills through plantation. Remediation 18:71–90

    Article  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase iso-enzyme. J Exp Bot 53:1305–1319

    Article  CAS  PubMed  Google Scholar 

  • Singh IP, Siddiqui ZA (2003) Effects of fly ash and Helminthosporium oryzae on growth and yield of three cultivars of rice. Bioresour Technol 86:73–78

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Ma LQ, Srivastava M, Rathinasabapathi B (2006) Metabolic adaptations to arsenic-induced oxidative stress in P vittata L. and Pteris ensiformis L. Plant Sci 170:274–282

    Article  CAS  Google Scholar 

  • Sinha S, Gupta AK (2005) Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L Ritz: effect on antioxidants. Chemosphere 61:1204–1214

    Article  CAS  PubMed  Google Scholar 

  • Sinha S, Rai UN, Bhatt K, Pandey K, Gupta AK (2005) Fly ash induced oxidative stress and tolerance in Prosopis juliflora L. grown on different amended substrates. Environ Monit Assess 102:447–457

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N (1996) The function and metabolism of ascorbic acid in plants. Ann Bot 78:661–669

    Article  CAS  Google Scholar 

  • Srivastava M, Ma LQ et al (2005) Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic. J Exp Bot 56:1335–1342

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Kumari B, Singh SN (2008) Microbe-induced changes in metal extractability from fly ash. Chemosphere 71:1284–1294

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Kumari B, Singh SN (2010) Evaluation of metal mobility/immobility in fly ash induced by bacterial strains isolated from the rhizospheric zone of Typha latifolia growing on fly ash dumps. Bioresour Technol 99:1305–1310

    Article  Google Scholar 

  • Tripathi RD, Dwivedi S et al (2008) Role of blue green algae biofertilizer in ameliorating the nitrogen demand and fly-ash stress to the growth and yield of rice (Oryza sativa L.) plants. Chemosphere 70:1919–1929

    Article  CAS  PubMed  Google Scholar 

  • Vajpayee P, Rai UN et al (2000) Management of fly ash landfills with Cassia surattensis Burm. – a case study. Bull Environ Contam Toxicol 65:675–682

    Article  CAS  PubMed  Google Scholar 

  • Walkely YA, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    Article  Google Scholar 

  • Weckx JEJ, Chlisters HMM (1997) Zn phytotoxicity induces oxidative stress in primary leaves of Phaseolus vulgaris. Plant Physiol Biochem 35:405–410

    CAS  Google Scholar 

  • Wenzel WW, Jockwer F (1999) Accumulation of heavy metals in plants grown on mineralized soils of the Austrian Alps. Environ Pollut 104:145–155

    Article  CAS  Google Scholar 

  • Wong JWC, Wong MH (1990) Effects of fly ash on yields and elemental composition of two vegetables, Brassica parachinensis and Brassica chinensis. Agric Ecosyst Environ 30:254–264

    Google Scholar 

  • Zenk MH (1996) Heavy metals detoxification in higher plants – a review. Gene 179:21–30

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Directors, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P., and CSIR-National Botanical Research Institute, Lucknow, UP, India, for motivation of collaborating research to exchange required research facilities. Alka Kumari is grateful to DST for providing financial support under WOS-A scheme (SR/WOS-A/LS-117/2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alka Kumari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumari, A. (2017). Fly Ash-Induced Metabolic Adaptations in Three Ferns. In: Shukla, V., Kumar, S., Kumar, N. (eds) Plant Adaptation Strategies in Changing Environment. Springer, Singapore. https://doi.org/10.1007/978-981-10-6744-0_7

Download citation

Publish with us

Policies and ethics