Skip to main content

Adaptation of Lichens to Extreme Conditions

Abstract

Lichens exhibit the classic features of stress-tolerant organisms, viz. slow growth rates, considerable longevity, low demand for nutrients, and the presence of specific adaptations to survive in the most inhospitable environments on Earth. The ability of lichens to tolerate the extremes posed by deserts, polar regions, and chemically rich environments involves both morphological and physiological adaptation and changes in ecological behaviour so that species adapt to relatively protected niches within an extreme environment. This chapter discusses those aspects of the lichen symbiosis relevant to survival in extreme conditions and then describes the adaptation of lichens to (1) wet forests, (2) deserts, (3) the Arctic, (4) alpine regions, (5) Antarctica, (6) chemically rich environments, and (7) extraterrestrial environments such as outer space and Mars. It is evident that the lichen symbiosis is more tolerant to hostile conditions than its symbionts, morphological and physiological adaptations are intimately associated, and convergent evolution has resulted in similar changes in different environments.

Keywords

  • Lichen
  • Extreme environments
  • Adaptation
  • Arctic/alpine regions
  • Antarctica
  • Deserts
  • Chemically rich environments
  • Extraterrestrial environment

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-10-6744-0_1
  • Chapter length: 27 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-10-6744-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2
Fig. 1.3
Fig. 1.4
Fig. 1.5

Abbreviations

ABC transporter:

ATP-binding casette transporter

EBF:

European BIOPAN Facility

GSH:

Glutathione

GST:

Glutathione S-transferase

ISS:

International Space Station

nPS:

Net photosynthesis

ROS:

Reactive oxygen species

S/V:

Surface/volume ratio

SOD:

Superoxide dismutase

THEMIS:

Thermal Emission Imaging System

UV:

Ultraviolet

References

  • Ahmadjian V (1970) Adaptation of Antarctic terrestrial plants. In: Holdgate MW (ed) Antarctic ecology, vol 2. Academic, New York, pp 801–811

    Google Scholar 

  • Armstrong RA (1974) The descriptive ecology of saxicolous lichens in area of South Merionethshire, Wales. J Ecol 62:33–45. https://doi.org/10.2307/2258878

    CrossRef  Google Scholar 

  • Armstrong RA (1976) The influence of the frequency of wetting and drying on the radial growth of three saxicolous lichens in the field. New Phytol 77:719–724. https://doi.org/10.1111/j.1469-8137.1976.tb-04666.x

    CrossRef  Google Scholar 

  • Armstrong RA (1981) Field experiments on the dispersal, establishment and colonization of lichens on a slate rock surface. Environ Exp Bot 21:116–120

    CrossRef  Google Scholar 

  • Armstrong RA (1984) The influence of bird droppings and uric acid on the growth of five species of saxicolous lichens. Environ Exp Bot 4:95–99. https://doi.org/10.1016/0098-8472(84)90065-0

    CrossRef  Google Scholar 

  • Armstrong RA (1990a) Dispersal, establishment, and survival of soredia and fragments of the lichen Hypogymnia physodes (L.) New Phytol 114:239–245

    CrossRef  Google Scholar 

  • Armstrong RA (1990b) The influence of calcium and magnesium on the growth of the lichens Xanthoria parietina and Parmelia saxatilis. Environ Exp Bot 30:51–57. https://doi.org/10.1016/0098-8472(90)90008-R

    CAS  CrossRef  Google Scholar 

  • Armstrong RA (1991) The influence of climate on the dispersal of lichen soredia. Environ Exp Bot 31:239–245

    CrossRef  Google Scholar 

  • Armstrong RA (2002) The effect of rock surface aspect on growth, size structure, and competition in the lichen Rhizocarpon geographicum. Environ Exp Bot 48:187–194. https://doi.org/10.1016/S00098-8472(02)00040-0

    CrossRef  Google Scholar 

  • Armstrong RA (2004) Could lichens live on Mars? Microbiologist 4:30–33

    Google Scholar 

  • Armstrong RA (2005) Radial growth of Rhizocarpon section Rhizocarpon lichen thalli over six years at Snoqualmie pass in the Cascade range, Washington state. Arct Antarct Alp Res 37:411–415. https://doi.org/10.1657/1523-0430(2005)037[0411:RGORSR]:RGORSRJ2.0.CO;2

    CrossRef  Google Scholar 

  • Armstrong RA (2013) Development of areolae and growth of the peripheral prothallus in the crustose lichen Rhizocarpon geographicum: an image analysis study. Symbiosis 60:7–15. https://doi.org/10.1007/s13199-013-0234-2

    CrossRef  Google Scholar 

  • Armstrong RA (2015) The influence of environmental factors on the growth of lichens in the field. In: Upreti DK, Divakar PK, Shukla V, Bajpal R (eds) Recent advances in lichenology. Springer International Publishing. AG, New Delhi, pp 1–18

    Google Scholar 

  • Armstrong RA, Bradwell T (2010) Growth of crustose lichens: a review. Geografiska Ann Series A Phys Geogr 92A:3–17

    CrossRef  Google Scholar 

  • Armstrong RA, Bradwell T (2011) Growth of foliose lichens: a review. Symbiosis 53:1–16. https://doi.org/10.1007/s13199-011-0108-4

    CrossRef  Google Scholar 

  • Armstrong RA, Smith SN (1987) Development and growth of the lichen Rhizocarpon geographicum. Symbiosis 3:287–300

    Google Scholar 

  • Armstrong RA, Smith SN (2009) Carbohydrates in the hypothallus and areolae of the crustose lichen Rhizocarpon geographicum (L.) DC. Symbiosis 49:95–100

    CAS  CrossRef  Google Scholar 

  • Armstrong RA, Welch AR (2007) Competition in lichen communities. Symbiosis 43:1–12

    Google Scholar 

  • Aubert S, Juge C, Boisson AM, Gout E, Bligny R (2007) Metabolic processes sustaining the reviviscence of lichen Xanthoria elegans (Link) in high mountain environments. Planta 226:1287–1297. https://doi.org/10.1007/s00425-007-0563-6

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G (2006) Insights on the evolution of trehalose biosynthesis. BMC Evol Biol 6:109–124

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Awasthi DD, Agrawal MR (1970) An enumeration of lichens from the tropical and subtropical regions of Darjeeling District, India. J Indian Bot Soc 69:122

    Google Scholar 

  • Bailey RH (1976) Ecological aspects of dispersal and establishment in lichens. In: Brown DH, Bailey RH, Hawksworth DL (eds) Progress and problems in lichenology. Academic, London, pp 215–247

    Google Scholar 

  • Baniya CB, Solhoy T, Gauslaa Y, Palmer MW (2010) The elevation gradient of lichen species richness in Nepal. Lichenologist 42:83–96. https://doi.org/10.1017/S0024282909008627

    CrossRef  Google Scholar 

  • Bartak M, Hajek J, Vrabilkova H, Dubova J (2004) High-light stress and photoprotection in Umbilicaria antarctica monitored by chlorophyll fluorescence imaging and changes in zeaxanthin and glutathione. Plant Biol 6:333–341. https://doi.org/10.1055/s-2004-820877

    CAS  PubMed  CrossRef  Google Scholar 

  • Beckett RP (1996) Some aspects of the water relations of the coastal lichen Xanthoria parietina (L.) Th. Fr. Acta Physiol Plant 18:229–234

    Google Scholar 

  • Beschel RE (1961) Dating rock surfaces by lichen growth and its application to the glaciology and physiography (lichenometry). In: Raasch GO (ed) Geology of the Arctic. University of Toronto Press, Toronto, pp 1044–1062

    Google Scholar 

  • Billings WD (1973) Arctic and alpine vegetation: similarities and susceptibility to disturbance. Bioscience 23:697–704. https://doi.org/10.2307/1296827

    CrossRef  Google Scholar 

  • Billings WD, Mooney HA (1968) The ecology of arctic and alpine plants. Biol Rev 43:481–529. https://doi.org/10.1111/j.1469-185X.1968.tb00968x

    CrossRef  Google Scholar 

  • Bjerke JW, Lerfall K, Elvebakk A (2002) Effects of ultraviolet radiation and PAR on the content of usnic and divaricatic acids in two arctic-alpine lichens. Photochem Photobiol Sci 1:678–685. https://doi.org/10.1039/b203399b

    CAS  PubMed  CrossRef  Google Scholar 

  • Bjerke JW, Bokhorst S, Zielke M, Callaghan TV, Bowles FW, Phoenix GK (2011) Contrasting sensitivity to extreme winter warming events of dominant sub-Arctic heathland bryophyte and lichen species. J Ecol 99:1481–1488. https://doi.org/10.1111/j.1365-2745.2011.01859.x

    CrossRef  Google Scholar 

  • Bliss LC (1956) A comparison of plane development in microenvironments of Arctic and Alpine tundras. Ecol Monogr 26:303–337

    CrossRef  Google Scholar 

  • Bliss LC (1962) Adaptations of arctic and alpine plants to environmental conditions. Arctic 15:117–144

    CrossRef  Google Scholar 

  • Brandt A, de Vera JP, Onofri S, Ott S (2015) Viability of the lichen Xanthoria elegans and its symbionts after 18 months of space exposure and simulated Mars conditions on the ISS. Int J Astrobiol 14:411–425. https://doi.org/10.1017/S1473550414000214

    CAS  CrossRef  Google Scholar 

  • Brandt A, Posthoff E, de Vera JP, Onofri S, Ott S (2016) Characterisation of growth and ultrastructural effects of the Xanthoria elegans photobiont after 1.5 years of space exposure on the International Space Station. Orig Life Evol Biosph 46:311–321. https://doi.org/10.1007/s11084-015-9470-1

    CAS  PubMed  CrossRef  Google Scholar 

  • Broady PA (1986) In: Pickard J (ed) Ecology and taxonomy of the terrestrial algae of the Vestfold Hills. Antarctic oases. Academic, Sydney, pp 165–202

    Google Scholar 

  • Brodo IM (1973) Substrate ecology. In: Ahmadjian V, Hale ME (eds) The lichens. Academic, London

    Google Scholar 

  • Cao SN, Zhang J, Zheng HY, Liu CP, Zhou QM (2015) Photosynthetic performance in Antarctic lichens with different growth forms reflect the diversity of lichenized algal adaptations to microhabitats. Polish Polar Res 36:175–188. https://doi.org/10.1515/popore-2015-0012

    CrossRef  Google Scholar 

  • Clayden SR (1998) Thallus initiation and development in the lichen Rhizocarpon lecanorinum. New Phytol 139:685–695

    CrossRef  Google Scholar 

  • Convey P, Chown SL, Clarke A, Barnes, Bokhurst S, Cummings V, Ducklow HW, Frati F, Green TGA, Gordon S, Griffiths HJ, Howard-Williams C, Huiskes AHL, Laybourn-Parry J, Lyons WB, McMinn A, Morley SA, Peck LS, Quesada A, Robinson SA, Schiaparelli S, Wall DH (2014) The spatial structure of Antarctic biodiversity. Ecol Monogr 84:203–244. https://doi.org/10.1890/12-2216.1

    CrossRef  Google Scholar 

  • Cuny D, Van Haluwyn C, Shiralli P, Zerimech F, Jerome L, Haguenoer JM (2004) Cellular impact of metal trace elements in terricolous lichen Diploschistes muscorum (Scop.) R Sant., − identification of oxidative stress biomarkers. Water Air Soil Pollut 152:55–69

    CAS  CrossRef  Google Scholar 

  • Dodge CW (1973) Lichen Flora of the Antarctic continent and Adjacent Islands. Phoenix, Canaan

    Google Scholar 

  • Fahselt D (1998) Production of ascocarps by high Arctic lichens in relation to altitude. In: Glenn MG, Harris RC, Dirig R, Cole MS (eds) Lichenographia Thomsoniana: North American lichenology in honour of JW Thomson. Mycotaxon Ltd, Ithaca, pp 389–397

    Google Scholar 

  • Farrar JF (1973) Lichen physiology. In: Ferry BW, Baddeley MS, Hawksworth DL (eds) Progress and problems in lichenology. Athlone Press, University of London, London, pp 238–282

    Google Scholar 

  • Farrar JF (1976) The lichen as an ecosystem: observation and experiment. In: Brown DH, Bailey RH, Hawksworth DL (eds) Progress and problems in lichenology. Academic, London, pp 385–406

    Google Scholar 

  • Figueira R, Sousa AJ, Brown DH, Catarino F, Pacheco AMG (1999) Natural levels of saline elements in lichens: determination of cellular fractions and their importance as saline tracers. Lichenologist 31:183–196. https://doi.org/10.1006/lich.1998.0179

    CrossRef  Google Scholar 

  • Fletcher A (1976) Nutritional aspects of marine and maritime lichen ecology. In: Brown DH, Bailey RH, Hawksworth DL (eds) Progress and problems in lichenology. Academic, London, pp 359–384

    Google Scholar 

  • Follman G (1967) Zur Bedentung der Salzbestänbung für die Krustenflecten. Ber Dtsch Bot Ges 80:206–208

    Google Scholar 

  • Friedmann EI (1977) Microorganisms in Antarctic desert rocks from dry valleys and Dufek Massif. Antarc J US 12:26–30

    Google Scholar 

  • Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053

    CAS  PubMed  CrossRef  Google Scholar 

  • Galun M (1963) Autecological and synecological observations on lichens in the Negev, Israel. Isreal J Bot 12:179–187

    Google Scholar 

  • Garty J, Kauppi M, Kauppi A (1995) Differential responses of certain lichen species to sulphur-containing solutions under acidic conditions as expressed by the production of stress-ethylene. Environ Res 69:132. https://doi.org/10.1006/enrs.1995.1034

    CAS  PubMed  CrossRef  Google Scholar 

  • Garvie LAJ, Knauth LP, Bungartz F, Kionowski S, Nash TH (2008) Life in extreme environments: survival strategy of the endolithic desert lichen Verrucaria rubrocincta. Naturwissenschaften 95:705–712. https://doi.org/10.1007/s00114-008-0373-0

    CAS  PubMed  CrossRef  Google Scholar 

  • Glenn MG, Orsi EV, Hemsley ME (1991) Lichen metal contents as correlates of air filter measurements. Grana 30:44–47

    CrossRef  Google Scholar 

  • Glenn MG, Gomez-Bolea A, Lobello R (1995) Metal content and community structure of cryptogram bioindicators in relation to vehicular traffic in Montseny Biosphere Reserve (Catalonia, Spain). Lichenologist 27:291–304

    CrossRef  Google Scholar 

  • Green TGA, Snelgar WP, Brown DH (1981) Carbon dioxide exchange in lichens. Carbon dioxide exchange through cyphellate lower cortex of Sticta latifrons rich. New Phytol 88:421–426. https://doi.org/10.1111/j.1469-8137.1981.tb04090.x

    CrossRef  Google Scholar 

  • Grime JP (1979) Plant strategies and vegetation processes. Wiley, London

    Google Scholar 

  • Haag RW (1974) Nutrient limitations to plant production in two tundra communities. Can J Bot 52:103–116

    CAS  CrossRef  Google Scholar 

  • Hale ME (1967) The biology of lichens. Edward Arnold, London

    Google Scholar 

  • Hauk M, Jurgens SR, Brinkman M, Heminghaus S (2008) Surface hydrophobicity causes SO2 tolerance in lichens. Anns Bot 101:531–539. https://doi.org/10.1093/aob/mcm306

    CrossRef  Google Scholar 

  • Hauk M, Jurgens SR, Huneck S, Leuschner C (2009) High acidity tolerance in lichens with fumarprotocetraric, periatolic or thamnolic acids correlated with low pK(a1) values of these lichen substances. Environ Pollut 157:2776–2780. https://doi.org/10.1016/j.envpol.2009.04.022

    CrossRef  CAS  Google Scholar 

  • Hertel H (1984) Über Saxicole, Lecideoide Flechten der Subantarckis. In: Hertel H, Oberwinkler F, Cramer J (eds) Beiträge zur lichenologie, Festschrift J Poelt. Vaduz, pp 399–499

    Google Scholar 

  • Hilmo O (1994) Distribution and succession of epiphytic lichens on Picea abies branches in a boreal forest, Central Norway. Lichenologist 26:149–169

    CrossRef  Google Scholar 

  • Honegger R (1978) Ascarpontogenie, Axusstrukter und funktion bei Vertretern der Gattung Rhizocarpon. Beriche Dtsch Botanischen Ges 91:579–594

    Google Scholar 

  • James PW, Hawksworth DL, Rose F (1977) In: Seaward MRD (ed) Lichen communities in the British isles: a preliminary conspectus. Academic, London, pp 295–419

    Google Scholar 

  • John EA (1989) An assessment of the role of biotic interactions and dynamic processes in the organisation of a species in a saxicolous lichen community. Can J Bot 67:2025–2037

    CrossRef  Google Scholar 

  • Kallio P, Heinonen S (1971) Influence of short-term low temperature on net photosynthesis in some subarctic lichens. Rep Kevo Subarct Res Stn 8:63–72

    Google Scholar 

  • Kappen L (1973) Response to extreme environments. In: Ahmadjian V, Hale ME (eds) The lichens. Academic, New York, pp 311–380

    CrossRef  Google Scholar 

  • Kappen L (1983) Ecology and physiology of the Antarctic fruticose lichen Usnea sulphurea (Koenig) Th. Fries. Polar Biol 1:249–255. https://doi.org/10.1007/BF00443196

    CrossRef  Google Scholar 

  • Kappen L (1985) Water relations and net photosynthesis of Usnea. A comparison between Usnea faciata (maritime Antarctic) and Usnea sulphurea (continental Antarctic). In: Brown DH (ed) Lichen physiology and cell biology. Plenum Press, New York, pp 41–56

    CrossRef  Google Scholar 

  • Kappen L (1988) Chapter II.B.2: Ecophysiological relationships in different climatic regions. In: Galun M (ed) Handbook of lichenology, vol 2. CRC Press, Boca Rato

    Google Scholar 

  • Kappen L, Friedmann EI (1983) Ecophysiology of lichens in the dry valleys of southern Victoria-land, Antarctic. 2. CO2 gas exchange in cryptoendolithic lichens. Polar Biol 1:227–232. https://doi.org/10.1007/BF00443193

    CrossRef  Google Scholar 

  • Kappen L, Friedmann EI, Garty J (1981) Ecophysiology of lichens in the dry valleys of southern Victoria-land, Antarctic. 1. Microclimate of the cryptoendolithic-lichen habitat. Flora 171:216–235

    CrossRef  Google Scholar 

  • Kärenlampi L, Pelkonen M (1971) Studies on the morphological variation of the lichen Cladonia uncialis. Rep Kevo Res Stn 7:47–53

    Google Scholar 

  • Kershaw KA (1978) The role of lichens in boreal tundra transition areas. Bryologist 81:294–306. https://doi.org/10.2307/3242190

    CrossRef  Google Scholar 

  • Kershaw KA (1983) The thermal operating-environment of a lichen. Lichenologist 15:191–207. https://doi.org/10.1017/S002428298300286

    CrossRef  Google Scholar 

  • Kidron GJ (2002) Causes of the two patterns of lichen zonation on cobbles in the Negev Desert Israel. Lichenologist 34:71–80. https://doi.org/10.1006/lich.2001.0366

    CrossRef  Google Scholar 

  • Kranner I, Cram WJ, Zorn M, Wornik S, Yoshimura I, Stabentheiner E, Pfeifhofer HW (2005) Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc Natl Acad Sci U S A 102:3141–3146. https://doi.org/10.1073/pnas.0407716102

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kuznetz LH, Gan DC (2002) On the existence and stability of liquid water on the surface of Mars today. Astrobiology 2:183–195. https://doi.org/10.1089/15311070260192255

    CAS  PubMed  CrossRef  Google Scholar 

  • Lange OL (1953) Hitze- und Trokenresistenz der Flechten in Beziehung zu ihrer Verbreitung. Flora. (Jena) 140:39–97

    Google Scholar 

  • Lange OL (1966) CO2-Gaswechsel der Fechte Cladonia alcicornis nach Langfristigem Aufenthalt bei tiefen Temperaturen. Flora 156(B):500–502

    CAS  Google Scholar 

  • Lange OL, Bertsch A (1965) Photosynthese der Wüstenflechte Ramalina maciformis nach Wasserdampfaufnahme aus dem Luftraum. Naturwissenschaften 52:215

    CAS  CrossRef  Google Scholar 

  • Lange OL, Killian E (1985) Reaktvierung der Photosynthese trockener Flechten durch Wasserdampfanfriahire aus dem Luftraum. Flora 176:7–23

    CrossRef  Google Scholar 

  • Lange OL, Budel B, Heber U, Meyer A, Zellner H, Green TGA (1993) Temperate rain-forest lichens in New Zealand, high thallus water content can severely limit photosynthetic CO2 exchange. Oecologia 95:303–313

    CAS  PubMed  CrossRef  Google Scholar 

  • Larsen DW (1984) Thallus size as a complicating factor in the physiological ecology of lichens. New Phytol 97:87–97

    CrossRef  Google Scholar 

  • Lawrey JD (1984) Biology of lichenized fungi. Praeger Publishers, New York

    Google Scholar 

  • Lawrey JD (1995) Lichen allelopathy-a review. ACS Symp Ser 582:26–38

    CAS  CrossRef  Google Scholar 

  • Li H, Wei JC (2016) Functional analysis of thioredoxin from the desert lichen-forming fungus, Endocarpon pusillum Hedwig, reveals its role in stress tolerance. Sci Rep 6:27184. https://doi.org/10.1038/srep27184

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lindsay DC (1978) The role of lichens in Antarctic ecosystems. Bryologist 81:268–276. https://doi.org/10.2307/3242188

    CrossRef  Google Scholar 

  • Link SO, Nash TH (1984) An analysis of an arctic lichen community with respect to slope on siliceous rocks at Anaktuvuk Pass, Alaska. Bryologist 87:162–166. https://doi.org/10.2307/3243126

    CrossRef  Google Scholar 

  • Llano GA (1965) The flora of Antarctica. In: Hatherton T (ed) Antarctica. Methuen & Co, London, pp 331–350

    Google Scholar 

  • Llimona X (1982) Lichens of the arid Mediterranean area and North Africa. J Hattori Bot Lab 33:345–359

    Google Scholar 

  • Longton RE (1979) Vegetation ecology and classification in the Antarctic zone. Can J Bot 57:2264–2278

    CrossRef  Google Scholar 

  • Marton K, Galun M (1981) The cyanophilous lichen population of the Arava valley and the Judean Desert (Israel). Isreal J Bot 30:125–155

    Google Scholar 

  • Massara AC, Bates JW, Bell JNB (2009) Exploring causes of the decline of the lichen Lecanora conizaeoides in Britain: effects of experimental N and S applications. Lichenologist 41:673–681

    CrossRef  Google Scholar 

  • Matos P, Cardosa-Vihena J, Figueira R, Sousa A (2011) Effects of salinity stress on cellular location of elements and photosynthesis in Ramalina canariensis Steiner. Lichenologist 43:155–164. https://doi.org/10.1017/S0024282910000757

    CrossRef  Google Scholar 

  • Matthes U (1980) Photosynthetischer CO2-Gaswechsel Verschiedener Flechtenarten in Abhängigkeit vom Wassergehalt des Thallus. Diplomarbeit, Würzburg

    Google Scholar 

  • Mattick F (1954) Die Flechten der Tropen. Congrès Int de Botanique, Botanisches Museum Berlin Dahlem, Rapport, p 21

    Google Scholar 

  • Meessen J, Backhaus T, Sadowsky A, Mrkalj M, Sanchez FJ, de la Torre R, Ott S (2014) Effects of UVC254 nm on the photosynthetic activity of photobionts from the astrobiologically relevant lichens Buellia frigida and Circinaria gyrosa. Int J Astrobiol 13:340–352. https://doi.org/10.1017/S1473550414000275

    CAS  CrossRef  Google Scholar 

  • Monteil PO (2000) Soluble carbohydrates (trehalose in particular) and cryoprotection in polar biota. Cryo-Lett 21:83–90

    Google Scholar 

  • Nash TH, Moser TJ, Bertke CC, Link SO, Sigal LL, White SL, Fox CA (1982a) Photosynthetic patterns of Sonoran desert lichens. I. Environmental considerations and preliminary field measurements. Flora 172:335–345

    CrossRef  Google Scholar 

  • Nash TH, Lange OL, Kappen L (1982b) Photosynthetic patterns of Sonoran desert lichens. II A multivariate laboratory analysis. Flora 172:419–426

    CrossRef  Google Scholar 

  • Nier AO, Hanson WB, Seiff WB, McElroy MB, Spencer NW, Duckett RJ et al (2003) Composition and structure of the Martian atmosphere: preliminary results from Viking 1. J Mass Spect 38:3–5. (reprinted from Science 193:786–788, 1976)

    Google Scholar 

  • Nordhagen R (1928) Die Vegetation und Flora des Sylenegebietes. I. die Vegetation. Skr Nor Vidensk Akad Oslo 1:1–612

    Google Scholar 

  • Oberlander GT (1956) Summer fog precipitation on the San Francisco Peninsula. Ecology 37:851–852

    CrossRef  Google Scholar 

  • Odum EP (1971) Fundamentals of ecology. WB Saunders Co, Philadelphia

    Google Scholar 

  • Onofri S, de Vera JP, Zucconi L, Selbmann L, Scalzi G, Venkateswaran KJ, Rabbow E, de la Torre R, Homeck G (2015) Survival of Antarctic cryptoendolithic fungi in simulated Martian conditions on board the International Space Station. Astrobiology 15:1052–1324. https://doi.org/10.1089/ast.2015.1324

    CAS  PubMed  CrossRef  Google Scholar 

  • Ott S (2004) Early stages of development in Usnea antarctica Du Rietz in the South Shetland Islands, northern maritime Antarctica. Lichenologist 36:413–423. https://doi.org/10.1017/S0024282904014380

    CrossRef  Google Scholar 

  • Pannewitz S, Schlensog M, Green TGA, Sancho LG, Schroeter B (2003) Are lichens active under snow in continental Antarctica? Oecologia 135:30–38

    PubMed  CrossRef  Google Scholar 

  • Piercey-Normore MD, Deduke C (2011) Fungal farmers or algal escorts: lichen adaptation from the algal perspective. Mol Ecol 20:3708–3710. https://doi.org/10.1111/j.1365-294X.2011.05191.x

    PubMed  CrossRef  Google Scholar 

  • Piervittori R, Alessio F, Maffei M (1994) Fatty-acid variations in the lichen Xanthoria parietina. Phytochemistry 36:853–856

    CAS  CrossRef  Google Scholar 

  • Pinokiyo A, Singh KP, Singh JS (2008) Diversity and distribution of lichens in relation to altitude within a protected biodiversity hot spot, north-east India. Lichenologist 40:47–62. https://doi.org/10.1017/S0024282908007214

    CrossRef  Google Scholar 

  • Pitman GTK (1973) A lichenometrical study of snowpatch variation in the Frederikshåb district, southwest Greenland and its implication for the study of climatic and glacial fluctuations. Bull Grønl Undersøkelse 104:1–31

    Google Scholar 

  • Puckett KJ, Nieboer E, Gorzinski MJ, Richardson DHS (1973) The uptake of metal ions by lichens: a modified ion-exchange process. New Phytol 72:329–342

    CAS  CrossRef  Google Scholar 

  • Raggio J, Pintado A, Ascaso C, de la Torre R, de los Rios A, Wierzchos J, Horneck G, Sancho LG (2011) Whole lichen thalli survive exposure to space conditions: results of Lithopanspermia experiment with Aspicilia fruticulosa. Astrobiology 11:281–292. https://doi.org/10.1089/ast.2010.0588

    CAS  PubMed  CrossRef  Google Scholar 

  • Raggio J, Green TGA, Sancho LG (2016) In situ monitoring of microclimate and metabolic activity in lichens from Antarctic extremes: a comparison between South Shetland Islands and the McMurdo Dry Valleys. Polar Biol 39:113–122. https://doi.org/10.1007/s00300-015-1676-1

    CrossRef  Google Scholar 

  • Ramkaer K (1978) The influence of salinity on the establishment phase of rocky shore lichens. Bot Tidsskr 72:119–123

    Google Scholar 

  • Richardson DHS (1995) Metal uptake by lichens. Symbiosis 18:119–127

    CAS  Google Scholar 

  • Richardson DHS, Hill DJ, Smith DC (1968) Lichen physiology XI. The role of the alga in determining the pattern of carbohydrate movement between lichen symbionts. New Phytol 67:469–486

    CAS  CrossRef  Google Scholar 

  • Riehmer R (1932) Eine Okologie Afrikanischer Rindenflechten. (Quoted in L Kappen 1988)

    Google Scholar 

  • Rogers RW (1971) Distribution of the lichen Chondropsis semiviridis in relation to its heat and drought resistance. New Phytol 70:1069

    CrossRef  Google Scholar 

  • Rogers RW (1990) Ecological strategies of lichens. Lichenologist 22:149–289

    CrossRef  Google Scholar 

  • Rundel PW (1978) Ecological relationships of desert fog lichens. Bryologist 81:277–293

    CrossRef  Google Scholar 

  • Rundel PW (1988) Chapter II.B.2: Water relations. In: Galun M (ed) Handbook of lichenology, vol 2. CRC Press, Boca Raton

    Google Scholar 

  • Russel RS (1940) Physiological and ecological studies on an arctic vegetation. III. Observations on carbon assimilation, carbohydrate storage and stomatal movement in relation to the growth of plants on Jan Mayen Island. J Ecol 28:289–309

    CrossRef  Google Scholar 

  • Rustichelli C, Visioli G, Kostecka D, Vurro E, Sanita di Troppi L, Marmiroli N (2008) Proteomic analysis of the lichen Physcia adscendens exposed to cadmium stress. Environ Pollut 156:1121–1127. https://doi.org/10.1016/j.envpol.2008.04.010

    CAS  PubMed  CrossRef  Google Scholar 

  • Sadowsky A, Ott S (2016) Symbiosis as a successful strategy in continental Antarctica: performance and protection of Trebouxia photosystem II in relation to lichen pigmentation. Polar Biol 39:139–151. https://doi.org/10.1007/s00300-015-1677-0

    CrossRef  Google Scholar 

  • Sancho LG, Green TGA, Pintado A (2007) Slowest to fastest: extreme range in lichen growth rates supports their use as an indicator of climate change in Antarctica. Flora 202:667–673

    CrossRef  Google Scholar 

  • Schroeter B, Scheidegger C (1995) Water relations in lichens at subzero temperatures – structural changes and carbon-dioxide exchange in the lichen Umbilicaria aprina from continental Antarctica. New Phytol 131:273–285. https://doi.org/10.1111/j.1469-8137.1995.tb05729.x

    CrossRef  Google Scholar 

  • Shirtcliffe NJ, Pyatt FB, Newton MI, McHale G (2006) A lichen protected by a super-hydrophobic and breathable structure. J Plant Physiol 163:1193–1197. https://doi.org/10.1016/jplph.2005.11.007

    CAS  PubMed  CrossRef  Google Scholar 

  • Smiley TL, Zumbergh JH (1971) Polar deserts. Science 174:79–80

    CAS  PubMed  CrossRef  Google Scholar 

  • Smith RIL (1984) Terrestrial plant biology of the sun-Arctic and Antarctica. In: Laws RM (ed) Antarctic ecology, vol 1. Academic, New York, pp 61–162

    Google Scholar 

  • Smith RIL (1995) Colonization by lichens and the development of lichen-dominated communities in the maritime Antarctic. Lichenologist 27:473–483. https://doi.org/10.1016/S0024-2829(95)80007-7

    CrossRef  Google Scholar 

  • Smith DC, Douglas E (1987) The biology of symbiosis. Edward Arnold, Victoria

    Google Scholar 

  • Smith DC, Molesworth S (1973) Lichen physiology XIII. Effects of rewetting dry lichens. New Phytol 72:525–533. https://doi.org/10.1111/j.1469-8137.1973.tb04403.x

    CrossRef  Google Scholar 

  • Strobl A, Turk R, Thalhamer J (1994) Investigations on the protein composition of the lichen Pseudevernia furfuracea (L.) Zopt. Var Ceratea (Ach.) Hawksw. From different altitudes. Phyton-Anns Bot 34:67–83

    CAS  Google Scholar 

  • Thomson JW (1982) Lichen vegetation and ecological patterns in the high Arctic. J Hattori Bot Lab 53:361–364

    Google Scholar 

  • Titus TN, Kieffer HH, Christensen PR (2003) Exposed water ice discovered near the south pole of Mars. Science 290:1048–1051. https://doi.org/10.1126/science.1080497

    CrossRef  CAS  Google Scholar 

  • Uchida M, Nakatsubo T, Kanda H, Koizumi H (2006) Estimation of annual primary production of the lichen Cetrariella delisei in a glacier foreland in the high Arctic, Nylalesund, Svalbard. Polar Res 25:39–49. https://doi.org/10.1111/j.1751-8369.2006.tb00149.x

    Google Scholar 

  • Vareschi V (1956) Algunos aspectos de la ecologia vegetal de la zona mas alto de la Sierra Nevada de Merida. Biol Fac Cienc For 3:9–16. (Quoted in L Kappen 1988)

    Google Scholar 

  • Vogel S (1955) Niedere ‘Fensterpfanzen’ in der Südafrikanisch Wüste, Eine Ökologische Schilderung. Beitr Biol Pfanz 32:45–135

    Google Scholar 

  • Weber WA (1962) Environmental modification and the taxonomy of the crustose lichens. Sven Bot Tidskr 56:293–333

    Google Scholar 

  • Wierzchos J, Davila AF, Artieda O, Camara-Gallego B, Rios AD, Nealson KH, Valea S, Garcia-Gonzalez MT, Ascaso C (2013) Ignimbrite as a substrate for endolithic life in the hyper-arid Atacama desert: implications for the search for life on Mars. Icarus 224:334–346. https://doi.org/10.1016/j.icarus.2012.06.009

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Armstrong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Armstrong, R.A. (2017). Adaptation of Lichens to Extreme Conditions. In: Shukla, V., Kumar, S., Kumar, N. (eds) Plant Adaptation Strategies in Changing Environment. Springer, Singapore. https://doi.org/10.1007/978-981-10-6744-0_1

Download citation