Skip to main content

Overview of Transcription Factors in Esophagus Cancer

  • Chapter
  • First Online:
  • 473 Accesses

Abstract

Esophageal cancer is one of the most malignant cancer types which rapidly invade into the neighbouring tissues, metastasize to adjacent lymph nodes, reside at distant organs, and develop secondary tumors. Transcription factors (TFs) are frequently deregulated in the pathogenesis of esophagus cancer and are a key class of cancer cell dependencies. Deregulated activation and inactivation of transcription factors in addition to mutations and translocations play central role in tumorigenesis. In normal physiological conditions, TFs are regulated in highly specific manner by upstream transcriptional regulators. However, in cancer, aberrant activation of transcriptional factors guide deregulated expression of numerous genes is coupled with tumor development and progression. This review will summarize about the transcriptional factors involved in poor prognosis of esophagus cancer and the chemotherapeutic drugs targeting transcriptional factors.

The original version of this chapter was revised. The book was inadvertently published without Abstracts and Keywords, which are now included in all the chapters. An erratum to this chapter can be found at https://doi.org/10.1007/978-981-10-6728-0_39

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andl CD, Mizushima T, Oyama K, Bowser M, Nakagawa H, Rustgi AK (2004) EGFR-induced cell migration is mediated predominantly by the JAK-STAT pathway in primary esophageal keratinocytes. Am J Physiol Gastrointest Liver Physiol 287(6):G1227–G1237

    Article  CAS  PubMed  Google Scholar 

  2. Arnal MJD, Arenas ÁF, Arbeloa ÁL (2015) Esophageal cancer: risk factors, screening and endoscopic treatment in western and eastern countries. World J Gastroenterol: WJG 21(26):7933

    Article  Google Scholar 

  3. Chen J, Lan T, Zhang W, Dong L, Kang N, Fu M, …, Zhan Q (2015) Dasatinib enhances cisplatin sensitivity in human esophageal squamous cell carcinoma (ESCC) cells via suppression of PI3K/AKT and Stat3 pathways. Arch Biochem Biophys 575:38–45

    Article  CAS  PubMed  Google Scholar 

  4. Chen MF, Chen PT, Lu MS, Lin PY, Chen WC, Lee KD (2013) IL-6 expression predicts treatment response and outcome in squamous cell carcinoma of the esophagus. Mol Cancer 12(1):1

    Article  CAS  Google Scholar 

  5. Cordani N, Pozzi S, Martynova E, Fanoni D, Borrelli S, Alotto D, …, Mantovani R (2011) Mutant p53 subverts p63 control over KLF4 expression in keratinocytes. Oncogene 30(8):922–932

    Article  CAS  PubMed  Google Scholar 

  6. Cui Y, Li YY, Li J, Zhang HY, Wang F, Bai X, Li SS (2016) STAT3 regulates hypoxia-induced epithelial mesenchymal transition in oesophageal squamous cell cancer. Oncol Rep 36(1):108–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Darnell JE (2002) Transcription factors as targets for cancer therapy. Nat Rev Cancer 2(10):740–749

    Article  CAS  PubMed  Google Scholar 

  8. Dey A, Tergaonkar V, Lane DP (2008) Double-edged swords as cancer therapeutics: simultaneously targeting p53 and NF-κB pathways. Nat Rev Drug Discov 7(12):1031–1040

    Article  CAS  PubMed  Google Scholar 

  9. Dvorak K, Chavarria M, Payne CM, Ramsey L, Crowley-Weber C, Dvorakova B, …, Bernstein C (2007) Activation of the interleukin-6/STAT3 antiapoptotic pathway in esophageal cells by bile acids and low pH: relevance to Barrett’s esophagus. Clin Cancer Res 13(18):5305–5313

    Article  CAS  PubMed  Google Scholar 

  10. Feng Y, Ke C, Tang Q, Dong H, Zheng X, Lin W, …, Zhang H (2014) Metformin promotes autophagy and apoptosis in esophageal squamous cell carcinoma by downregulating Stat3 signaling. Cell Death Dis 5(2):e1088

    Article  CAS  Google Scholar 

  11. Fuchs CS, Tomasek J, Yong CJ, Dumitru F, Passalacqua R, Goswami C, …, Melichar B (2014) Ramucirumabmonotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 383(9911):31–39

    Article  CAS  Google Scholar 

  12. Gao SY, Li EM, Cui L, Lu XF, Meng LY, Yuan HM, …, Xu LY (2009) Sp1 and AP-1 regulate expression of the human gene VIL2 in esophageal carcinoma cells. J Biol Chem 284(12):7995–8004

    Article  CAS  PubMed  Google Scholar 

  13. Grivennikov SI, Karin M (2010) Dangerous liaisons: STAT3 and NF-κB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev 21(1):11–19

    Article  CAS  PubMed  Google Scholar 

  14. Hammond EM, Giaccia AJ (2005) The role of p53 in hypoxia-induced apoptosis. Biochem Biophys Res Commun 331(3):718–725

    Article  CAS  PubMed  Google Scholar 

  15. Huang C, Wang L, Yang X, Lai L, Chen D, Duan C (2015) Expression of activated signal transducer and activator of transcription-3 as a predictive and prognostic marker in advanced esophageal squamous cell carcinoma. World J Surg Oncol 13(1):1

    Article  Google Scholar 

  16. Jenkins GJS, Harries K, Doak SH, Wilmes A, Griffiths AP, Baxter JN, Parry JM (2004) The bile acid deoxycholic acid (DCA) at neutral pH activates NF-κB and induces IL-8 expression in oesophageal cells in vitro. Carcinogenesis 25(3):317–323

    Article  CAS  PubMed  Google Scholar 

  17. Jung YD, Mansfield PF, Akagi M, Takeda A, Liu W, Bucana CD, …, Ellis LM (2002) Effects of combination anti-vascular endothelial growth factor receptor and anti-epidermal growth factor receptor therapies on the growth of gastric cancer in a nude mouse model. Eur J Cancer 38(8):1133–1140

    Article  CAS  PubMed  Google Scholar 

  18. Kanai M, Wei D, Li Q, Jia Z, Ajani J, Le X, …, Xie K (2006) Loss of Krüppel-like factor 4 expression contributes to Sp1 overexpression and human gastric cancer development and progression. Clin Cancer Res 12(21):6395–6402

    Article  CAS  PubMed  Google Scholar 

  19. Karin M, Lin A (2002) NF-κB at the crossroads of life and death. Nat Immunol 3(3):221–227

    Article  CAS  PubMed  Google Scholar 

  20. Kimura S, Kitadai Y, Tanak, S, Kuwai T, Hihara J, Yoshida K, …, Chayama K (2004) Expression of hypoxia-inducible factor (HIF)-1α is associated with vascular endothelial growth factor expression and tumor angiogenesis in human oesophageal squamous cell carcinoma. Eur J Cancer 40(12):1904–1912

    Article  CAS  PubMed  Google Scholar 

  21. Koon HW, Zhao D, Zhan Y, Rhee SH, Moyer MP, Pothoulakis C (2006) Substance P stimulates cyclooxygenase-2 and prostaglandin E2 expression through JAK-STAT activation in human colonic epithelial cells. J Immunol 176(8):5050–5059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kumar V, Gabrilovich DI (2014) Hypoxia-inducible factors in regulation of immune responses in tumor microenvironment. Immunology 143(4):512–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li B, Li YY, Tsao SW, Cheung AL (2009) Targeting NF-κB signaling pathway suppresses tumor growth, angiogenesis, and metastasis of human esophageal cancer. Mol Cancer Ther 8(9):2635–2644

    Article  CAS  PubMed  Google Scholar 

  24. Li H, Lu Y, Pang Y, Li M, Cheng X, Chen J (2017) Propofol enhances the cisplatin-induced apoptosis on cervical cancer cells via EGFR/JAK2/STAT3 pathway. Biomed Pharmacother 86:324–333

    Article  CAS  PubMed  Google Scholar 

  25. Libermann TA, Zerbini LF (2006) Targeting transcription factors for cancer gene therapy. Curr Genet Ther 6(1):17–33

    Article  CAS  Google Scholar 

  26. Lin C, Song L, Gong H, Liu A, Lin X, Wu J, …, Li J (2013a). Nkx2-8 downregulation promotes angiogenesis and activates NF-κB in esophageal cancer. Cancer Res 73(12):3638–3648

    Article  CAS  PubMed  Google Scholar 

  27. Lin C, Song L, Liu A, Gong H, Lin X, Wu J, …, Li J (2015) Overexpression of AKIP1 promotes angiogenesis and lymphangiogenesis in human esophageal squamous cell carcinoma. Oncogene 34(3):384–393

    Article  CAS  PubMed  Google Scholar 

  28. Lin Y, Totsuka Y, He Y, Kikuchi S, Qiao Y, Ueda J, …, Tanaka H (2013b) Epidemiology of esophageal cancer in Japan and China. J Epidemiol 23(4):233–242

    Article  PubMed  Google Scholar 

  29. Liu JR, Wu WJ, Liu SX, Zuo LF, Wang Y, Yang JZ, Nan YM (2015) Nimesulide inhibits the growth of human esophageal carcinoma cells by inactivating the JAK2/STAT3 pathway. Pathol Res Pract 211(6):426–434

    Article  CAS  PubMed  Google Scholar 

  30. Lopez-Pajares V, Qu K, Zhang J, Webster DE, Barajas BC, Siprashvili Z, …, Kretz M (2015) ALncRNA-MAF: MAFB transcription factor network regulates epidermal differentiation. Dev Cell 32(6):693–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Luo J, Jiang X, Cao L, Dai K, Zhang S, Ge X, …, Lu X (2014) Expression of YY1 correlates with progression and metastasis in esophageal squamous cell carcinomas. Oncol Targets Ther 7:1753–9

    Google Scholar 

  32. Luo J, Zhou X, Ge X, Liu P, Cao J, Lu X, …, Zhang S (2013) Upregulation of Ying Yang 1 (YY1) suppresses esophageal squamous cell carcinoma development through heme oxygenase-1. Cancer Sci 104(11):1544–1551

    Article  CAS  PubMed  Google Scholar 

  33. McConnell BB, Yang VW (2010) Mammalian Krüppel-like factors in health and diseases. Physiol Rev 90(4):1337–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nagata T, Shimada Y, Sekine S, Hori R, Matsui K, Okumura T, …, Tsukada K (2014)Prognostic significance of NANOG and KLF4 for breast cancer. Breast Cancer 21(1):96–101

    Article  PubMed  Google Scholar 

  35. Nagoya H, Futagami S, Shimpuku M, Tatsuguchi A, Wakabayashi T, Yamawaki H, …, Miyashita M (2014) Apurinic/apyrimidinic endonuclease-1 is associated with angiogenesis and VEGF production via upregulation of COX-2 expression in esophageal cancer tissues. Am J Physiol-Gastrointest Liver Physiol 306(3):G183–G190

    Article  CAS  PubMed  Google Scholar 

  36. Natsuizaka M, Naganuma S, Kagawa S, Ohashi S, Ahmadi A, Subramanian H, …, Klein-Szanto AJ (2012) Hypoxia induces IGFBP3 in esophageal squamous cancer cells through HIF-1α-mediated mRNA transcription and continuous protein synthesis. FASEB J 26(6):2620–2630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Naugler WE, Karin M (2008) NF-κB and cancer—identifying targets and mechanisms. Curr Opin Genet Dev 18(1):19–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. O’Donovan TR, O’Sullivan GC, McKenna SL (2011) Induction of autophagy by drug-resistant esophageal cancer cells promotes their survival and recovery following treatment with chemotherapeutics. Autophagy 7(5):509–524

    Article  PubMed  PubMed Central  Google Scholar 

  39. Papineni S, Chintharlapalli S, Abdelrahim M, Lee SO, Burghardt R, Abudayyeh A, …, Safe S (2009) Tolfenamic acid inhibits esophageal cancer through repression of specificity proteins and c-Met. Carcinogenesis 30(7):1193–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pore N, Jiang Z, Gupta A, Cerniglia G, Kao GD, Maity A (2006) EGFR tyrosine kinase inhibitors decrease VEGF expression by both hypoxia-inducible factor (HIF)-1–independent and HIF-1–dependent mechanisms. Cancer Res 66(6):3197–3204

    Article  CAS  PubMed  Google Scholar 

  41. Rapisarda A, Hollingshead M, Uranchimeg B, Bonomi CA, Borgel SD, Carter JP, …, Anver MR (2009) Increased antitumor activity of bevacizumab in combination with hypoxia inducible factor-1 inhibition. Mol Cancer Ther 8(7):1867–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rapisarda A, Uranchimeg B, Scudiero DA, Selby M, Sausville EA, Shoemaker RH, Melillo G (2002) Identification of small molecule inhibitors of hypoxia-inducible factor 1 transcriptional activation pathway. Cancer Res 62(15):4316–4324

    PubMed  CAS  Google Scholar 

  43. Rizkallah R, Alexander KE, Kassardjian A, Lüscher B, Hurt MM (2011) The transcription factor YY1 is a substrate for Polo-like kinase 1 at the G2/M transition of the cell cycle. PLoS One 6(1):e15928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Safe S, Imanirad P, Sreevalsan S, Nair V, Jutooru I (2014) Transcription factor Sp1, also known as specificity protein 1 as a therapeutic target. Expert Opin Ther Targets 18(7):759–769

    Article  CAS  PubMed  Google Scholar 

  45. Semenza GL (2000) HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88(4):1474–1480

    Article  CAS  PubMed  Google Scholar 

  46. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732

    Article  CAS  Google Scholar 

  47. Sen GL, Boxer LD, Webster DE, Bussat RT, Qu K, Zarnegar BJ, …, Khavari PA (2012) ZNF750 is a p63 target gene that induces KLF4 to drive terminal epidermal differentiation. Dev Cell 22(3):669–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shishodia S, Aggarwal BB (2004) Nuclear factor-κB: a friend or a foe in cancer? Biochem Pharmacol 68(6):1071–1080

    Article  CAS  PubMed  Google Scholar 

  49. Siveen KS, Sikka S, Surana R, Dai X, Zhang J, Kumar AP, …, Bishayee A (2014) Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors. Biochimi Biophys Acta (BBA)-Rev Cancer 1845(2):136–154

    Article  CAS  Google Scholar 

  50. Squarize CH, Castilho RM, Sriuranpong V, Pinto DS, Gutkind JS (2006) Molecular cross-talk between the NFκB and STAT3 signaling pathways in head and neck squamous cell carcinoma. Neoplasia 8(9):733–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stevens C, La Thangue NB (2003) E2F and cell cycle control: a double-edged sword. Arch Biochem Biophys 412(2):157–169

    Article  CAS  PubMed  Google Scholar 

  52. Sun Z, Andersson R (2002) NF-κB activation and inhibition: a review. Shock 18(2):99–106

    Article  PubMed  Google Scholar 

  53. Tabernero J, Macarulla T, Ramos FJ, Baselga J (2005) Novel targeted therapies in the treatment of gastric and esophageal cancer. Ann Oncol 16(11):1740–1748

    Article  CAS  PubMed  Google Scholar 

  54. Tacchini L, De Ponti C, Matteucci E, Follis R, Desiderio MA (2004) Hepatocyte growth factor-activated NF-κB regulates HIF-1 activity and ODC expression, implicated in survival, differently in different carcinoma cell lines. Carcinogenesis 25(11):2089–2100

    Article  CAS  PubMed  Google Scholar 

  55. Tang W, Zhu Y, Gao J, Fu J, Liu C, Liu Y, …, Chen W (2014) MicroRNA-29a promotes colorectal cancer metastasis by regulating matrix metalloproteinase 2 and E-cadherin via KLF4. Br J Cancer 110(2):450–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tetreault MP, Weinblatt D, Shaverdashvili K, Yang Y, Katz JP (2016) KLF4 transcriptionally activates non-canonical WNT5A to control epithelial stratification. Sci Rep 6

    Google Scholar 

  57. Tsantoulis PK, Gorgoulis VG (2005) Involvement of E2F transcription factor family in cancer. Eur J Cancer 41(16):2403–2414

    Article  CAS  PubMed  Google Scholar 

  58. Wang Y, Li M, Zang W, Ma Y, Wang N, Li P, …, Zhao G (2013) MiR-429 up-regulation induces apoptosis and suppresses invasion by targeting Bcl-2 and SP-1 in esophageal carcinoma. Cell Oncol 36(5):385–394

    Article  CAS  Google Scholar 

  59. Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81(3):323–330

    Article  CAS  PubMed  Google Scholar 

  60. Wu L, Timmers C, Maiti B, Saavedra HI, Sang L, Chong GT, …, Greenberg ME (2001) The E2F1–3 transcription factors are essential for cellular proliferation. Nature 414(6862):457–462

    Article  CAS  PubMed  Google Scholar 

  61. Xiong A, Yang Z, Shen Y, Zhou J, Shen Q (2014) Transcription factor STAT3 as a novel molecular target for cancer prevention. Cancer 6(2):926–957

    Article  CAS  Google Scholar 

  62. Yan Y, Zhiwei LI, Kong X, Jia Z, Zuo X, Gagea M, …, Xie K (2016) KLF4-mediated suppression of CD44 signaling negatively impacts pancreatic cancer stemness and metastasis. Cancer Res 76(8):2419–2431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yeo SY, Ha SY, Yu EJ, Lee KW, Kim JH, Kim SH (2014) ZNF282 (zinc finger protein 282), a novel E2F1 co-activator, promotes esophageal squamous cell carcinoma. Oncotarget 5(23):12260

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9(11):798–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zeng W, Li H, Chen Y, Lv H, Liu L, Ran J, …, Lai W (2016) Survivin activates NF-κB p65 via the IKKβ promoter in esophageal squamous cell carcinoma. Mol Med Rep 13(2) 1869–1880

    Article  CAS  PubMed  Google Scholar 

  66. Zhang C, Fu L, Fu J, Hu L, Yang H, Rong TH, …, Guan XY (2009) Fibroblast growth factor receptor 2–positive fibroblasts provide a suitable microenvironment for tumor development and progression in esophageal carcinoma. Clin Cancer Res 15(12):4017–4027

    Article  CAS  PubMed  Google Scholar 

  67. Zhang XD, Xie JJ, Liao LD, Long L, Xie YM, Li EM, Xu LY (2015) 12-O-Tetradecanoylphorbol-13-acetate induces up-regulated transcription of variant 1 but not variant 2 of VIL2 in esophageal squamous cell carcinoma cells via ERK1/2/AP-1/Sp1 signaling. PLoS One 10(4):e0124680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhao M, Zhang Y, Zhang H, Wang S, Zhang M, Chen X, …, Zhou C (2015) Hypoxia-induced cell stemness leads to drug resistance and poor prognosis in lung adenocarcinoma. Lung Cancer 87(2):98–106

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pallaval Veera Bramhachari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bramhachari, P.V., Prathyusha, A.M.V.N., Rama Sekhara Reddy, D. (2017). Overview of Transcription Factors in Esophagus Cancer. In: Nagaraju, G., Bramhachari, P. (eds) Role of Transcription Factors in Gastrointestinal Malignancies. Springer, Singapore. https://doi.org/10.1007/978-981-10-6728-0_4

Download citation

Publish with us

Policies and ethics