Advertisement

Targeting Arachidonic Acid Pathway-Associated NF-κB in Pancreatic Cancer

  • Nagendra Sastry Yarla
  • Olga Sukocheva
  • Ilaria Peluso
  • Swathi Putta
  • Pallaval Veera Bramhachari
  • Rajesh Yadala
  • Dinesh K. Tiwari
  • Srinivas Jagarlamudi
  • Luciana Scotti
  • Marcus T. Scotti
  • Marcella Reale
  • Mohammad Amjad Kamal
  • Ashraf Ghulam
  • Bechan Sharma
  • Madhukiran Parvathaneni
  • Chinthalapally V. Rao
  • Mastan Mannarapu
  • Anupam Bishayee
Chapter

Abstract

Pancreatic cancer is one of the foremost causes of cancer-related death in the United States and worldwide. Nuclear factor-kappa B (NF-κB) is a transcription factor which plays a pivotal involvement in pancreatic cancer owing to its connection at the downstream stage of many signaling cascades including arachidonic acid (AA) pathway. AA cascade is an upstream pathway and regulator of NF-κB pathway. Moreover, NF-κB can bind to the cis-acting elements in the promoter of phospholipase A2s, cyclooxygenases, and lipoxygenases, and these pathways are upregulated in a variety of cancers. Several investigators have proved that AA pathway-associated NF-κB has key role in pathophysiology of pancreatic cancer and has been considered as a vital therapeutic target. Several phytochemicals have been explored as novel therapeutic and preventive agents by targeting AA cascade-associated NF-κB pathway. In this chapter, the role of AA cascade-associated NF-κB pathway in pancreatic cancer has been reviewed and discussed about plant-derived inhibitors of this pathway for the prevention and the therapy of pancreatic cancer.

Keywords

NF-κB Arachidonic acid pathway Pancreatic cancer Natural products 

References

  1. 1.
    Urayama S (2015) Pancreatic cancer early detection: expanding higher-risk group with clinical and metabolomics parameters. World J Gastroenterol 21(6):1707–1717CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Xiong HQ (2004) Molecular targeting therapy for pancreatic cancer. Cancer Chemother Pharmacol 54:69–77Google Scholar
  3. 3.
    Gupta SC, Kim JH, Kannappan R, Reuter S, Dougherty PM, Aggarwal BB (2011) Role of nuclear factor-κB-mediated inflammatory pathways in cancer-related symptoms and their regulation by nutritional agents. Exp Biol Med 236:658–671CrossRefGoogle Scholar
  4. 4.
    Kashiwagi M, Friess H, Uhl W et al (1998) Phospholipase A2 isoforms are altered in chronic pancreatitis. Ann Surg 227(2):220–228CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zhang MS, Zhang KJ, Zhang J, Jiao XL, Chen D, Zhang DL (2014) Phospholipases A-II (PLA2-II) induces acute pancreatitis through activation of the transcription factor NF-kappaB. Eur Rev Med Pharmacol Sci 18(8):1163–1169PubMedGoogle Scholar
  6. 6.
    Yarla NS, Bishayee A, Vadlakonda L, Chintala R et al (2016) Phospholipase A2 isoforms as novel targets for prevention and treatment of inflammatory and oncologic diseases. Curr Drug Targets 17(16):1940–1962CrossRefPubMedGoogle Scholar
  7. 7.
    Senthilraja P, Kayitare J, Manivel G, Manikanda Prabhu S, Krishnamurthy A (2015) Potential compound derived from Catharanthus roseus to inhibit Non-Small Cell Lung Cancer (NSCLC). Int J Res Ayurveda Pharm 6(2):265–271CrossRefGoogle Scholar
  8. 8.
    Gong J, Xie J, Bedolla R, Rivas P, Chakravarthy D (2014) Combined targeting of STAT3/NF-κB/COX-2/EP4 for effective management of pancreatic cancer. Clin Cancer Res 20(5):1259–1273CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zhou L, Qi L, Jiang L, Zhou P et al (2014) Antitumor activity of gemcitabine can be potentiated in pancreatic cancer through modulation of TLR4/NF-κB signaling by 6-shogaol. AAPS J 16(2):246–257CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Knab LM, Grippo PJ, Bentrem DJ (2014) Involvement of eicosanoids in the pathogenesis of pancreatic cancer: the roles of cyclooxygenase-2 and 5-lipoxygenase. World J Gastroenterol 20(31):10729–10739CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lin DT, Subbaramaiah K, Shah JP, Dannenberg AJ, Boyle JO (2002) Cyclooxygenase-2: a novel molecular target for the prevention and treatment of head and neck cancer. Head Neck 24:792–799.  https://doi.org/10.1002/hed.10108 CrossRefPubMedGoogle Scholar
  12. 12.
    Howe LR, Dannenberg AJ (2002) A role for cyclooxygenase-2 inhibitors in the prevention and treatment of cancer. Semin Oncol 29:111–119CrossRefPubMedGoogle Scholar
  13. 13.
    Hill R, Li Y, Tran LM, Dry S et al (2012) Cell intrinsic role of COX-2 in pancreatic cancer development. Mol Cancer Ther 11(10):2127–2137CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Greenhough A, Smartt HJ, Moore AE et al (2009) The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 30:377–386CrossRefPubMedGoogle Scholar
  15. 15.
    Koehne C, Dubois R (2004) COX-2 inhibition and colorectal cancer. Semin Oncol 2:12–21CrossRefGoogle Scholar
  16. 16.
    Nath S, Mukherjee P (2014) MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends Mol Med 20:332–342CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Nath S, Roy LD, Grover P et al (2015) Mucin 1 regulates Cox-2 gene in pancreatic cancer. Pancreas 44(6):909–917CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mukherjee P, Basu GD, Tinder TL et al (2009) Progression of pancreatic adenocarcinoma is significantly impeded with a combination of vaccine and COX-2 inhibition. J Immunol 182:216–224CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ivanov I, Heydeck D, Hofheinz K, Roffeis J et al (2010) Molecular enzymology of lipoxygenases. Arch Biochem Biophys Elsevier Inc 503:161–174.  https://doi.org/10.1016/j.abb.2010.08.016 CrossRefGoogle Scholar
  20. 20.
    Knab LM, Schultz M, Principe DR, Mascarinas WE et al (2015) Ablation of 5-lipoxygenase mitigates pancreatic lesion development. J Surg Res 194(2):481–487CrossRefPubMedGoogle Scholar
  21. 21.
    Tong WG, Ding XZ, Talamonti MS, Bell RH, Adrian TE (2005) LTB4 stimulates growth of human pancreatic cancer cells via MAPK and PI-3 kinase pathways. Biochem Biophys Res Commun 335(3):949–956CrossRefPubMedGoogle Scholar
  22. 22.
    Comba A, Pasqualini ME (2009) Primers on molecular pathways – lipoxygenases: their role as an oncogenic pathway in pancreatic cancer. Pancreatology 9(6):724–728CrossRefPubMedGoogle Scholar
  23. 23.
    Zhou GX, Ding XL, Wu SB, Zhang HF et al (2015) Inhibition of 5-lipoxygenase triggers apoptosis in pancreatic cancer cells. Oncol Rep 33(2):661–668CrossRefPubMedGoogle Scholar
  24. 24.
    Safe S, Kasiappan R (2016) Natural products as mechanism-based anticancer agents: Sp transcription factors as targets. Phytother Res 30(11):1723–1732CrossRefPubMedGoogle Scholar
  25. 25.
    Sun M, Estrov Z, Ji Y, Kevin R, Coombes KR et al (2008) Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol Cancer Ther 7(3):464–473CrossRefPubMedGoogle Scholar
  26. 26.
    Cragg GM, Newman DJ (2005) Plants as a source of anti-cancer agents. J Ethnopharmacol 100:72–79CrossRefPubMedGoogle Scholar
  27. 27.
    Banerjee S, Wang Z, Kong D, Sarkar FH (2009) 3, 30- Diindolylmethane enhances chemosensitivity of multiple chemotherapeutic agents in pancreatic cancer. Cancer Res 69:5592–5600CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Domenicoa FD, Foppolib C, Cocciaa R, Perluigi M (2012) Antioxidants in cervical cancer: chemopreventive and chemotherapeutic effects of polyphenols. Biochim Biophys Acta 1822(5):737–747CrossRefGoogle Scholar
  29. 29.
    Dhillon N, Aggarwal BB, Newman RA, Wolff RA et al (2008) Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res 14(14):4491–4499CrossRefPubMedGoogle Scholar
  30. 30.
    Lev-Ari S, Vexler A, Starr A, Ashkenazy-Voghera M, Greif J et al (2007) Curcumin augments gemcitabine cytotoxic effect on pancreatic adenocarcinoma cell lines. Cancer Investig 25:411–418CrossRefGoogle Scholar
  31. 31.
    Cascinu S, Scartozzi M, Carbonari G, Pierantoni C et al (2007) COX-2 and NF-κB overexpression is common in pancreatic cancer but does not predict for COX-2 inhibitors activity in combination with gemcitabine and oxaliplatin. Am J Clin Oncol 30(5):526–530CrossRefPubMedGoogle Scholar
  32. 32.
    Uwagawa T, Misawa T, Sakamoto T, Ito R et al (2009) A phase I study of full-dose gemcitabine and regional arterial infusion of nafamostat mesilate for advanced pancreatic cancer. Ann Oncol 20(2):239–243CrossRefPubMedGoogle Scholar
  33. 33.
    Yanaga K et al (2007) Mechanisms of synthetic serine protease inhibitor (FUT-175)-mediated cell death. Cancer 109:2142–2153CrossRefGoogle Scholar
  34. 34.
    Banerjee S, Zhang Y, Ali S et al (2005) Molecular evidence for increased antitumor activity of gemcitabine by genistein in vitro and in vivo using an orthotopic model of pancreatic cancer. Cancer Res 65:9064–9072CrossRefPubMedGoogle Scholar
  35. 35.
    Deeb D, Gao X, Liu YB, Pindolia K, Gautam SC (2014) Pristimerin, a quinonemethide triterpenoid, induces apoptosis in pancreatic cancer cells through the inhibition of pro-survival Akt/NF-κB/mTOR signaling proteins and anti-apoptotic Bcl-2. Int J Oncol 44(5):1707–1715CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Mahajan UM, Gupta C, Wagh PR, Karpe PA, Tikoo K (2011) Alteration in inflammatory/apoptotic pathway and histone modifications by nordihydroguaiaretic acid prevents acute pancreatitis in Swiss albino mice. Apoptosis 16(11):1138–1149CrossRefPubMedGoogle Scholar
  37. 37.
    Carracedo A, Gironella M, Lorente M, Garcia S et al (2006) Cannabinoids induce apoptosis of pancreatic tumor cells via endoplasmic reticulum stress-related genes. Cancer Res 66(13):6748–6755CrossRefPubMedGoogle Scholar
  38. 38.
    Saleem M, Kaur S, Kweon MH, Adhami VM, Afaq F, Mukhtar H (2005) Lupeol, a fruit and vegetable based triterpene, induces apoptotic death of human pancreatic adenocarcinoma cells via inhibition of Ras signaling pathway. Carcinogenesis 26(11):1956–1964CrossRefPubMedGoogle Scholar
  39. 39.
    Hafeez BB, Jamal MS, Fischer JW, Mustafa A, Verma AK (2012) Plumbagin, a plant derived natural agent inhibits the growth of pancreatic cancer cells in in vitro and in vivo via targeting EGFR, Stat3 and NF-κB signaling pathways. Int J Cancer 131:2175–2186CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Zhou W, Kallifatidis G, Baumann B, Rausch V et al (2010) Dietary polyphenol quercetin targets pancreatic cancer stem cells. Int J Oncol 37(3):551–561PubMedGoogle Scholar
  41. 41.
    Kallifatidis G, Rausch V, Baumann B, Apel A et al (2009) Sulforaphane targets pancreatic tumour-initiating cells by NF-κB-induced antiapoptotic signaling. Gut 58(7):949–963CrossRefPubMedGoogle Scholar
  42. 42.
    Banerjee S, Sangwan V, McGinn O, Chugh R, Dudeja V, Vickers SM, Saluja AK (2013) Triptolide-induced cell death in pancreatic cancer is mediated by O-GlcNAc modification of transcription factor Sp1. J Biol Chem 288(47):33927–33938CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Husain K, Francois RA, Yamauchi T, Perez M, Sebti SM, Malafa MP (2011) Vitamin E d-tocotrienol augments the antitumor activity of gemcitabine and suppresses constitutive NF-κB activation in pancreatic cancer. Mol Cancer Ther 10:2363–2372CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Park B, Prasad S, Yadav V, Sung B, Aggarwal BB (2011) Boswellic acid suppresses growth and metastasis of human pancreatic tumors in an orthotopic nude mouse model through modulation of multiple targets. PLoS One 6(10):e2694Google Scholar
  45. 45.
    Swamy MV, Citineni B, Jagan MR et al (2008) Prevention and treatment of pancreatic cancer by curcumin in combination with omega-3 fatty acids. Nutr Cancer 60:81–89CrossRefPubMedGoogle Scholar
  46. 46.
    Saadat N, Gupta SV (2012) Potential role of garcinol as an anticancer agent. J Oncol 2012.; 2012:647206.  https://doi.org/10.1155/2012/647206 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd 2017

Authors and Affiliations

  • Nagendra Sastry Yarla
    • 1
  • Olga Sukocheva
    • 2
  • Ilaria Peluso
    • 3
  • Swathi Putta
    • 4
  • Pallaval Veera Bramhachari
    • 5
  • Rajesh Yadala
    • 1
  • Dinesh K. Tiwari
    • 1
  • Srinivas Jagarlamudi
    • 1
  • Luciana Scotti
    • 6
  • Marcus T. Scotti
    • 6
  • Marcella Reale
    • 7
  • Mohammad Amjad Kamal
    • 8
    • 9
    • 10
  • Ashraf Ghulam
    • 8
  • Bechan Sharma
    • 11
  • Madhukiran Parvathaneni
    • 12
  • Chinthalapally V. Rao
    • 13
  • Mastan Mannarapu
    • 14
  • Anupam Bishayee
    • 15
  1. 1.School of Life SciencesUniversity of HyderabadHyderabadIndia
  2. 2.School of Health SciencesFlinders University of South AustraliaAdelaideAustralia
  3. 3.Research Centre for Food and Nutrition, Council for Agricultural Research and EconomicsRomeItaly
  4. 4.Department of Pharmaceutical SciencesUniversity College of Pharmaceutical Sciences, Andhra UniversityVisakhapatnamIndia
  5. 5.Department of BiotechnologyKrishna UniversityMachilipatnamIndia
  6. 6.Federal University of ParaibaJoão PessoaBrazil
  7. 7.Department of Medical, Oral and Biotechnological SciencesUniversity “G. D’Annunzio”ChietiItaly
  8. 8.King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
  9. 9.Enzymoics, 7 Peterlee PlaceHebershamAustralia
  10. 10.Novel Global Community Educational FoundationHebershamAustralia
  11. 11.Department of BiochemistryUniversity of AllahabadAllahabadIndia
  12. 12.Department of BiotechnologyHarrisburg University of Science and TechnologyHarrisburgUSA
  13. 13.Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology SectionUniversity of Oklahoma Health Sciences Center (OUHSC)Oklahoma CityUSA
  14. 14.Department of BiotechnologyDravidian University KuppamChittoorIndia
  15. 15.Department of Pharmaceutical Sciences, College of PharmacyLarkin UniversityMiamiUSA

Personalised recommendations