Semantic Interpretation of Tweets: A Contextual Knowledge-Based Approach for Tweet Analysis

Chapter

Abstract

Tweets are cryptic and often laced with insinuation. Hence, interpretation of tweets cannot be done in isolation. Human beings can interpret the tweets because they possess the requisite Contextual Knowledge. This knowledge enables them to understand the context of tweets and interpret the text. Emulating interpretation ability in machines requires the machine to acquire this contextual knowledge. Tweets pertaining to political and societal issues contain domain-specific terms. Interpretation of such tweets solely on the basis of sentiment orientation of words produces incorrect sentiment tags. Polarity of terms is based on the topic of reference. Thus, an understanding of the pertinent domain terms and their associated sentiment is essential to guide the sentiment mining process. A resource of relevant domain-specific contextual terms and associated sentiments can help to achieve an enhanced sentiment mining performance. With the objective of equipping the machine with the contextual knowledge to facilitate semantic interpretation, we tap the Web resources, process them and structure them as Contextual Knowledge Structures (CKS). We then leverage the CKS to enable a semantic interpretation of tweets. We construct a CKS-based training set to train the Naïve Bayes classifier and classify the tweets. We further transform the CKS into sentiment training set (STS) and use it for detecting sentiment polarity tags for tweets. CKS provide the necessary background knowledge pertaining to issues, events, and the related domain-specific terms, thus facilitating semantic sentiment mining. All our experiments are conducted in the context of political/public policy, trending topic, and event-related tweets with an objective of obtaining a pulse of the political climate in India. Our CKS-based classifier exhibits an accuracy of 94.23% in mapping the tweets to the political topic. The distance-based CKS-Sentiment mining algorithm exhibits a consistent performance with an accuracy of 70.90%. The relevance of this contribution is: (a) a novel method which leverages the Web content to derive an optimum training set for tweet analysis, (b) a high degree of Accuracy, Precision, and Recall in tweet classification and sentiment mining with a small CKS-based training set, (c) a topic-adaptive model which can adapt to any domain or topic and exhibit improved tweet analysis performance.

Keywords

Social media analysis Tweet classification Contextual Knowledge Structures Sentiment mining 

References

  1. 1.
    Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1–2), 1–135.CrossRefGoogle Scholar
  2. 2.
    Ribeiro, F. N., Araújo, M., Gonçalves, P., Gonçalves, M. A., & Benevenuto, F. (2016). Sentibench-a benchmark comparison of state-of-the-practice sentiment analysis methods. EPJ Data Science, 5(1), 1–29.CrossRefGoogle Scholar
  3. 3.
    Zeng, D., Chen, H., Lusch, R., & Li, S. H. (2010). Social media analytics and intelligence. IEEE Intelligent Systems, 25(6), 13–16.CrossRefGoogle Scholar
  4. 4.
    Li, C., Sun, A., Weng, J., & He, Q. (2015). Tweet segmentation and its application to named entity recognition. IEEE Transactions on Knowledge and Data Engineering, 27(2), 558–570.CrossRefGoogle Scholar
  5. 5.
    Kaufmann, M., & Kalita, J. (2010, January). Syntactic normalization of twitter messages. In International Conference on Natural Language Processing, Kharagpur, India.Google Scholar
  6. 6.
    Volkova, S., Bachrach, Y., Armstrong, M., & Sharma, V. (2015, January). Inferring latent user properties from texts published in social media. In AAAI (pp. 4296–4297).Google Scholar
  7. 7.
    Burnap, P., Rana, O. F., Avis, N., Williams, M., Housley, W., Edwards, A., et al. (2015). Detecting tension in online communities with computational Twitter analysis. Technological Forecasting and Social Change95, 96–108.Google Scholar
  8. 8.
    Gomadam, K., Yeh, P. Z., Verma, K., & Miller, J. A. (2012, June). Data enrichment using web APIs. In 2012 IEEE First International Conference on Services Economics (SE) (pp. 46–53). IEEE.Google Scholar
  9. 9.
    Jadhav, A. S., Purohit, H., Kapanipathi, P., Anantharam, P., Ranabahu, A. H., Nguyen, V., et al. (2010). Twitris 2.0: Semantically empowered system for understanding perceptions from social data.Google Scholar
  10. 10.
    Villanueva, D., González-Carrasco, I., López-Cuadrado, J. L., & Lado, N. (2016). SMORE: Towards a semantic modeling for knowledge representation on social media. Science of Computer Programming, 121, 16–33.CrossRefGoogle Scholar
  11. 11.
    Chai, X., Deshpande, O., Garera, N., Gattani, A., Lam, W., Lamba, D. S., … et al. (2013). Social media analytics: The Kosmix story. IEEE Data Engineering Bulletin, 36(3), 4–12.Google Scholar
  12. 12.
    Vosoughi, S., Zhou, H., & Roy, D. (2016). Enhanced twitter sentiment classification using contextual information. arXiv preprint arXiv:1605.05195.Google Scholar
  13. 13.
    Theodotou, A., & Stassopoulou, A. (2015, November). A system for automatic classification of twitter messages into categories. In International and Interdisciplinary Conference on Modeling and Using Context (pp. 532–537). Cham: Springer.Google Scholar
  14. 14.
    Derczynski, L., Maynard, D., Rizzo, G., van Erp, M., Gorrell, G., Troncy, R., et al. (2015). Analysis of named entity recognition and linking for tweets. Information Processing & Management51(2), 32–49.Google Scholar
  15. 15.
    Liu, S., Cheng, X., Li, F., & Li, F. (2015). TASC: Topic-adaptive sentiment classification on dynamic tweets. IEEE Transactions on Knowledge and Data Engineering, 27(6), 1696–1709.CrossRefGoogle Scholar
  16. 16.
    Ritter, A., Clark, S., & Etzioni, O. (2011, July). Named entity recognition in tweets: An experimental study. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (pp. 1524–1534). Association for Computational Linguistics.Google Scholar
  17. 17.
    McDonald, G., Deveaud, R., McCreadie, R., Macdonald, C., & Ounis, I. (2015). Tweet enrichment for effective dimensions classification in online reputation management.Google Scholar
  18. 18.
    He, Y., Yang, C. S., Yu, L. C., Lai, K. R., & Liu, W. (2015, December). Sentiment classification of short texts based on semantic clustering. In 2015 International Conference on  Orange Technologies (ICOT) (pp. 54–57). IEEE.Google Scholar
  19. 19.
    Hatzivassiloglou, V., & Wiebe, J. M. (2000, July). Effects of adjective orientation and gradability on sentence subjectivity. In Proceedings of the 18th Conference on Computational linguistics—Volume 1 (pp. 299–305). Association for Computational Linguistics.Google Scholar
  20. 20.
    Hu, M., & Liu, B. (2004, August). Mining and summarizing customer reviews. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 168–177). ACM.Google Scholar
  21. 21.
    Taboada, M., & Grieve, J. (2004, March). Analyzing appraisal automatically. In Proceedings of AAAI Spring Symposium on Exploring Attitude and Affect in Text, Stanford University, CA (AAAI Technical Re# port SS# 04# 07) (pp. 158–161). AAAI Press.Google Scholar
  22. 22.
    Read, J., & Carroll, J. (2009, November). Weakly supervised techniques for domain-independent sentiment classification. In Proceedings of the 1st International CIKM Workshop on Topic-Sentiment Analysis for Mass Opinion (pp. 45–52). ACM.Google Scholar
  23. 23.
    Pang, B., Lee, L., & Vaithyanathan, S. (2002, July). Thumbs up? Sentiment classification using machine learning techniques. In Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing (Vol. 10, pp. 79–86). Association for Computational Linguistics.Google Scholar
  24. 24.
    Pang, B., & Lee, L. (2004, July). A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics (p. 271). Association for Computational Linguistics.Google Scholar
  25. 25.
    Boiy, E., Hens, P., Deschacht, K., & Moens, M. F. (2007, June). Automatic sentiment analysis in on-line text. In ELPUB (pp. 349–360).Google Scholar
  26. 26.
    Zhao, J., Liu, K., & Wang, G. (2008, October). Adding redundant features for CRFs-based sentence sentiment classification. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (pp. 117–126). Association for Computational Linguistics.Google Scholar
  27. 27.
    Narayanan, R., Liu, B., & Choudhary, A. (2009, August). Sentiment analysis of conditional sentences. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 1 (pp. 180–189). Association for Computational Linguistics.Google Scholar
  28. 28.
    Hassan, A., Abbasi, A., & Zeng, D. (2013, September). Twitter sentiment analysis: A bootstrap ensemble framework. In 2013 International Conference on Social Computing (SocialCom) (pp. 357–364). IEEE.Google Scholar
  29. 29.
    Khan, F. H., Bashir, S., & Qamar, U. (2014). TOM: Twitter opinion mining framework using hybrid classification scheme. Decision Support Systems, 57, 245–257.CrossRefGoogle Scholar
  30. 30.
    Abel, F., Celik, I., Houben, G. J., & Siehndel, P. (2011). Leveraging the semantics of tweets for adaptive faceted search on twitter. The Semantic Web–ISWC 2011, 1–17.Google Scholar
  31. 31.
    Simeon, C., & Hilderman, R. (2015, October). Evaluating the effectiveness of hashtags as predictors of the sentiment of tweets. In International Conference on Discovery Science (pp. 251–265). Cham: Springer.Google Scholar
  32. 32.
    Saif, H., He, Y., Fernandez, M., & Alani, H. (2016). Contextual semantics for sentiment analysis of Twitter. Information Processing and Management, 52(1), 5–19.CrossRefGoogle Scholar
  33. 33.
    Ghiassi, M., Skinner, J., & Zimbra, D. (2013). Twitter brand sentiment analysis: A hybrid system using n-gram analysis and dynamic artificial neural network. Expert Systems with Applications, 40(16), 6266–6282.CrossRefGoogle Scholar
  34. 34.
    Saif, H., He, Y., & Alani, H. (2012). Semantic sentiment analysis of twitter. The Semantic Web–ISWC 2012, 508–524.Google Scholar
  35. 35.
    Bahrainian, S. A., & Dengel, A. (2013, December). Sentiment analysis and summarization of twitter data. In 16th International Conference on  Computational Science and Engineering (CSE), 2013 IEEE (pp. 227–234). IEEE.Google Scholar
  36. 36.
    Kontopoulos, E., Berberidis, C., Dergiades, T., & Bassiliades, N. (2013). Ontology-based sentiment analysis of twitter posts. Expert Systems with Applications, 40(10), 4065–4074.CrossRefGoogle Scholar
  37. 37.
    Javed, N., & Muralidhara, B. L. (2015). Automating corpora generation with semantic cleaning and tagging of tweets for multi-dimensional social media analytics. International Journal of Computer Applications, 127(12), 11–16.CrossRefGoogle Scholar
  38. 38.
    Han, J., Pei, J., & Kamber, M. (2011). Data mining: Concepts and techniques. Amsterdam: Elsevier.Google Scholar
  39. 39.
    Wu, Z., & Palmer, M. (1994). Verbs semantics and lexical selection. In Proceedings of the 32nd annual meeting on Association for Computational Linguistics (pp. 133–138). Association for Computational Linguistics, (1994, June).Google Scholar
  40. 40.
    Liu, H. (2004). MontyLingua: An end-to-end natural language processor with common sense.Google Scholar
  41. 41.
    Pennebaker, J. W., Booth, R. J., Boyd, R. L., & Francis, M. E. (2015). Linguistic inquiry and word count: LIWC2015. Austin, TX: Pennebaker Conglomerates.Google Scholar
  42. 42.
    Hutto, C. J., & Gilbert, E. (2014, May). Vader: A parsimonious rule-based model for sentiment analysis of social media text. In Eighth International AAAI Conference on Weblogs and Social Media.Google Scholar
  43. 43.
    Nielsen, F. Å. (2011). A new ANEW: Evaluation of a word list for sentiment analysis in microblogs. arXiv preprint arXiv:1103.2903.Google Scholar
  44. 44.
    Go, A., Bhayani, R., & Huang, L. (2009). Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford, 1(2009), 12.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Computer Science and ApplicationsBangalore UniversityBengaluruIndia

Personalised recommendations