Advertisement

Cryptanalysis of Protocol for Enhanced Threshold Proxy Signature Scheme Based on Elliptic Curve Cryptography for Known Signers

Chapter

Abstract

The proxy signature is the elucidation to the entrustment of signing capabilities in any secure electronic milieu. Numerous schemes are prophesied, but they are chattels of information security. In this, I anticipate an enhanced secure threshold proxy signature scheme based on elliptic curve cryptography. I compare the performance of scheme(s) with the performance of a scheme has been anticipated by the writer of this article formerly. I investigate enhanced threshold proxy signature scheme for diverse parameters like entropy, floating frequencies/intuitive synthesis, ASCII histogram, autocorrelation, histogram analysis and vitany. Consequently, the enhanced threshold proxy signature scheme based on elliptic curve cryptography is safe and effective against infamous conspiracy attack(s).

Keywords

Proxy signature Unforgeability Secret sharing Time constraint Elliptic curve cryptography Non-repudiation and threshold scheme for known signers 

Notes

Acknowledgements

The author also wishes to thank many anonymous referees for their suggestions to improve this paper.

References

  1. 1.
    Koblitz, N. (1987). Elliptic curve cryptosystems. Mathematics of Computation, 48, 203–209.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    BlueKrypt. (2015). Cryptographic key length recommendation. www.keylength.com.
  3. 3.
    ElGamal, T. (1985). A public-key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions of Information Theory, 31(4), 469–472.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Miller, V. S. (1985). Uses of elliptic curves in cryptography. In Advances in cryptology—Crypo85. LNCS (Vol. 218, pp. 417–426).Google Scholar
  5. 5.
    Desmedt, Y., & Frankel, Y. (1989). Threshold cryptosystems. In The Proceedings of Advances in Cryptology. Crypto89 (pp. 307–315).Google Scholar
  6. 6.
    Zhang, K. (1997). Threshold proxy signature schemes. In Proceedings of Information Security Workshop (pp. 191–197).Google Scholar
  7. 7.
    Kim, S., Park, S., & Won, D. (1997). Proxy signatures, revisited. In The Proceedings of ICICS. ICICS97, LNCS (Vol. 1334, pp. 223–232).Google Scholar
  8. 8.
    Sun, H.-M. (1999). An efficient nonrepudiable threshold proxy signature scheme with known signers. Computer Communications, 22(8), 717–722.CrossRefGoogle Scholar
  9. 9.
    Hwang, M.-S., IEEE Member, Lu, E. J.-L., & Lin, I.-C. (2003). A practical (t, n) threshold proxy signature scheme based on the RSA cryptosystem. IEEE Transactions on Knowledge and Data Engineering, 15(6), 1552–1560.CrossRefGoogle Scholar
  10. 10.
    Wang, G., Bao, F., Zhou, J., & Deng, R. H. (2004). Comments on “A practical (t, n) threshold proxy signature scheme based on the RSA cryptosystem”. IEEE Transactions on Knowledge and Data Engineering, 16(10), 1309–1311.CrossRefGoogle Scholar
  11. 11.
    Kuo, W.-C., & Chen, M.-Y. (2005). A modified (t, n) threshold proxy signature scheme based on the RSA cryptosystem. In Proceedings of the Third International Conference on Information Technology and Applications. ICITA05 (pp. 576–579).Google Scholar
  12. 12.
    Li, F., Xue, Q., & Cao, Z. (2007). Crypanalysis of Kuo and Chen’s threshold proxy signature scheme based on the RSA. In The Proceedings of International Conference on Information Technology. ITNG07 (pp. 815–818).Google Scholar
  13. 13.
    Geng, Y.-J., Hui, T., Fan, H. (2007). A modified and practical threshold proxy signature scheme based on RSA. In Proceedings of the ICACT. ICACT07 (pp. 1958–1960).Google Scholar
  14. 14.
    Lee, N. Y., Hwang, T., & Wang, C. H. (1998). On Zang’s nonrepudiable proxy signature schemes. In The Proceedings of ACISP98, LNCS (pp. 415–422).Google Scholar
  15. 15.
    Mambo, M., Usuda, K., & Okamoto, E. (1996). Proxy signature delegation of the power to sign message. IEICE Transactions on Fundamentals, E-79A(9), 1338–1353.Google Scholar
  16. 16.
    Mambo, M., Usuda, K., & Okamoto, E. (1996). Proxy signatures for delegating signing operation. In Proceeding of Third ACM Conference of Computer and Communications Security (pp. 48–57).Google Scholar
  17. 17.
    Sun, H.-M., Lee, N.-Y., & Hwang, T. (1999). Threshold proxy signatures. IEEE Proceedings of Computers and Digital Techniques, 146(5), 259–263.CrossRefGoogle Scholar
  18. 18.
    Lee, C.-C., Lin, T.-C., Tzeng, S.-F., & Hwang, M.-S. (2011). Generalization of proxy signature based on factorization. International Journal of Innovative Computing, Information and Control, 7(3), 1039–1054.Google Scholar
  19. 19.
    Tzeng, S.-F., Lee, C.-C., & Hwang, M.-S. (2011). A batch verification for multiple proxy signature. Parallel Processing Letters, 21(1), 77–84.MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Hwang, M.-S., Tzeng, S.-F., & Chiou, S.-F. (2009). A non-repudiable multi-proxy multi-signature scheme. Innovative Computing, Information and Control Express Letters, 3(3), 259–264.Google Scholar
  21. 21.
    Lu, E. J.-L., Hwang, M.-S., & Huang, C.-J. (2005). A new proxy signature scheme with revocation. Applied Mathematics and Computation, 161(3), 799–806.MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Yang, C.-Y., Tzeng, S.-F., & Hwang, M.-S. (2004). On the efficiency of nonrepudiable threshold proxy signature scheme with known signers. The Journal of Systems and Software, 73(3), 507–514.CrossRefGoogle Scholar
  23. 23.
    Tzeng, S.-F., Yang, C.-Y., & Hwang, M.-S. (2004). A nonrepudiable threshold multi-proxy multi-signature scheme with shared verification. Future Generation Computer Systems, 20(5), 887–893.CrossRefGoogle Scholar
  24. 24.
    Tzeng, S.-F., Hwang, M.-S., & Yang, C.-Y. (2004). An improvement of nonrepudiable threshold proxy signature scheme with known signers. Computers & Security, 23(2), 174–178.CrossRefGoogle Scholar
  25. 25.
    Hwang, M.-S., Tzeng, S.-F., & Tsai, C.-S. (2004). Generalization of proxy signature based on elliptic curves. Computer Standards & Interfaces, 26(2), 73–84.CrossRefGoogle Scholar
  26. 26.
    Tsai, C.-S., Tzeng, S.-F., & Hwang, M.-S. (2003). Improved non-repudiable threshold proxy signature scheme with known signers. Informatica, 14(3), 393–402.MathSciNetMATHGoogle Scholar
  27. 27.
    Li, L.-H., Tzeng, S.-F., & Hwang, M.-S. (2003). Generalization of proxy signature based on discrete logarithms. Computers & Security, 22(3), 245–255.CrossRefGoogle Scholar
  28. 28.
    Hwang, M.-S., Lee, C.-C., & Hwang, S.-J. (2002). Cryptanalysis of the Hwang-Shi proxy signature scheme. Fundamenta Informaticae, 53(2), 131–134.MathSciNetMATHGoogle Scholar
  29. 29.
    Hwang, M.-S., Lin, I.-C., & Lu, E. J.-L. (2000). A secure nonrepudiable threshold proxy signature scheme with known signers. Informatica, 11(2), 137–144.MATHGoogle Scholar
  30. 30.
    Okamoto, T., Mitsuru, T., & Okamoto E. (1999). Extended proxy signature for smart cards. In LNCS (pp. 247–258). Springer.Google Scholar
  31. 31.
    Rivest, R. L., Shamir, A., & Adleman, L. M. (1978). A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21(2), 120–126.MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Lee, N. Y., Hwang, T., Wang, C. H., & Zhang, O. (1998). Nonrepudiable proxy signature schemes. In Proceedings of Australasian conference on information security and privacy. ACISP98 (pp. 415–422). Google Scholar
  33. 33.
    Katzenbeisser, S. (2001). Recent advances in RSA cryptography (pp. 85–90). Springer.Google Scholar
  34. 34.
    Denning, D. E. R. (1982). Cryptography and data security (pp. 115–265). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.Google Scholar
  35. 35.
    Hsu, C. L., Wu, T. S., & Wu, T. C. (2001). New nonrepudiable threshold proxy signature scheme with known signers. The Journal of Systems and Software, 58(5), 119–124.Google Scholar
  36. 36.
    Agrawal, M., Kayal, N., Saxena, N. (2004). PRIMES in P. Annals of Mathematics, 160(2), 781–793.Google Scholar
  37. 37.
    Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Section 31.8: Primality testing. Introduction to algorithms (2nd ed., pp. 889–890). MIT Press, McGraw-Hill. ISBN 0-262-03293-7.Google Scholar
  38. 38.
    Li, C.-T. (2008). Multimedia foresics and security (1st ed., pp. 73–74). IGI Global. ISBN 978-1-59904-869-7.Google Scholar
  39. 39.
    Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association (American Statistical Association), 32(200), 675–701.Google Scholar
  40. 40.
    Verma, H. K., Kaur, K., & Kumar, R. (2008). Comparison of threshold proxy signature schemes. In International Conference on Security and Management. SAM08 (pp. 227–231). USA.Google Scholar
  41. 41.
    Kumar, R., & Verma, H. K. (2010). An advanced secure (t, n) threshold proxy signature schemes based on RSA cryptosystem for known signers. In IEEE 2nd International Advance Computing Conference. IACC10 (pp. 293–298). India.Google Scholar
  42. 42.
    Kumar, R., & Verma, H. K. (2010). Secure threshold proxy signature scheme based on RSA for known signers. Journal of Information Assurance and Security, USA, 5(4), 319–326.Google Scholar
  43. 43.
    Kumar, R., Verma, H. K., & Dhir, R. (2015). Analysis and design of protocol for enhanced threshold proxy signature scheme based on RSA for known signers. Wireless Personal Communications—An International Journal, 80(3), 1281–1345. Springer. ISSN: 0929-6212 (Print) 1572-834X (Online).Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringI. K. Gujral Punjab Technical UniversityKapurthalaIndia

Personalised recommendations