Skip to main content

Using Concurrent or Sequential Chemotherapy and Biomolecules

  • Chapter
  • First Online:
  • 1183 Accesses

Abstract

The primary objective of combining chemotherapy with radiation is to achieve an improved therapeutic result, i.e. enhanced tumour response or reduced normal tissue toxicity. A combination of chemotherapy and radiotherapy results in some advantages which are not possible with single-modality therapy. These include providing maximum cell kill within the range of toxicity tolerated by the host for each drug, offering a broader coverage of resistant cell lines in a tumour cell population and preventing or slowing development of any new drug-resistant cell lines. Pathways contributing to radiosensitization by chemotherapeutic or molecularly targeted agents include initial induction of radiation-induced DNA damage, DNA damage repair, modulation of cell-cycle kinetics, tumour microenvironment and cell repopulation.

This is a preview of subscription content, log in via an institution.

References

  1. Steel GG, Peckham MJ. Exploitable mechanisms in combined radiotherapy-chemotherapy: the concept of additivity. Int J Radiat Oncol Biol Phys. 1979;5(1):85–91.

    Article  CAS  PubMed  Google Scholar 

  2. Bentzen SM, Harari PM, Bernier J. Exploitable mechanisms for combining drugs with radiation: concepts, achievements and future directions. Nat Clin Pract Oncol. 2007;4(3):172–80.

    Article  PubMed  Google Scholar 

  3. Bentzen SM. Repopulation in radiation oncology: perspectives of clinical research. Int J Radiat Biol. 2003;79(7):581–5.

    Article  CAS  PubMed  Google Scholar 

  4. Kim JJ, Tannock IF. Repopulation of cancer cells during therapy: an important cause of treatment failure. Nat Rev Cancer. 2005;5(7):516–25.

    Article  CAS  PubMed  Google Scholar 

  5. Nishimura Y. Rationale for chemoradiotherapy. Int J Clin Oncol. 2004;9(6):414–20.

    Article  PubMed  Google Scholar 

  6. Harari PM, Huang SM. Head and neck cancer as a clinical model for molecular targeting of therapy: combining EGFR blockade with radiation. Int J Radiat Oncol Biol Phys. 2001;49(2):427–33.

    Article  CAS  PubMed  Google Scholar 

  7. Bentzen SM, Overgaard M, Thames HD, et al. Early and late normal-tissue injury after postmastectomy radiotherapy alone or combined with chemotherapy. Int J Radiat Biol. 1989;56(5):711–5.

    Article  CAS  PubMed  Google Scholar 

  8. Denis F, Garaud P, Bardet E, et al. Late toxicity results of the GORTEC 94-01 randomized trial comparing radiotherapy with concomitant radiochemotherapy for advanced-stage oropharynx carcinoma: comparison of LENT/SOMA, RTOG/EORTC, and NCI-CTC scoring systems. Int J Radiat Oncol Biol Phys. 2003;55(1):93–8.

    Article  PubMed  Google Scholar 

  9. Trotti A, Bentzen SM. The need for adverse effects reporting standards in oncology clinical trials. J Clin Oncol. 2004;22(1):19–22.

    Article  PubMed  Google Scholar 

  10. Peters KB, Brown JM. Tirapazamine: a hypoxia-activated topoisomerase II poison. Cancer Res. 2002;62(18):5248–53.

    CAS  PubMed  Google Scholar 

  11. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307(5706):58–62.

    Article  CAS  PubMed  Google Scholar 

  12. Carson CT, Schwartz RA, Stracker TH, et al. The Mre11 complex is required for ATM activation and the G2/M checkpoint. EMBO J. 2003;22(24):6610–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gray LH, Conger AD, Ebert M, et al. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol. 1953;26(312):638–48.

    Article  CAS  PubMed  Google Scholar 

  14. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721–32.

    Article  CAS  PubMed  Google Scholar 

  15. Withers HR, Taylor JM, Maciejewski B. The hazard of accelerated tumor clonogen repopulation during radiotherapy. Acta Oncol. 1988;27(2):131–46.

    Article  CAS  PubMed  Google Scholar 

  16. Larson DL. Treatment of tissue extravasation by antitumor agents. Cancer. 1982;49:1796–9.

    Article  CAS  PubMed  Google Scholar 

  17. Bertelli G, Gozza A, Forno GB, et al. Topical dimethylsulfoxide for the prevention of soft tissue injury after extravasation of vesicant cytotoxic drugs: a prospective clinical study. J Clin Oncol. 1995;13:2851–5.

    Article  CAS  PubMed  Google Scholar 

  18. Mader I, Fürst-Weger P, Mader R, et al. Extravasation of cytotoxic agents; compendium for prevention and management. 2nd ed. New York: Springer; 2009.

    Google Scholar 

  19. Schulmeister L. Extravasation management: clinical update. Semin Oncol Nurs. 2011;27(1):82–90.

    Article  PubMed  Google Scholar 

  20. Tsavaris N, Komitsopoulou P, Karagiaouris P, et al. Prevention of tissue necrosis due to accidental extravasation of cytostatic drugs by a conservative approach. Cancer Chemother Pharmacol. 1992;30:330–3.

    Article  CAS  PubMed  Google Scholar 

  21. Kwong C. Management of side effects from chemotherapy. Hong Kong Anti-Cancer Society. p. 1–7.

    Google Scholar 

  22. Mason KA, Komaki R, Cox JD, et al. Biology-based combined-modality radiotherapy: workshop report. Int J Radiat Oncol Biol Phys. 2001;50:1079–89.

    Article  CAS  PubMed  Google Scholar 

  23. Liang K, Ang KK, Milas L, et al. The epidermal growth factor receptor mediates radioresistance. Int J Radiat Oncol Biol Phys. 2003;57:246–54.

    Article  CAS  PubMed  Google Scholar 

  24. Mendelsohn J, Fan Z. Epidermal growth factor receptor family and chemosensitization. J Natl Cancer Inst. 1997;89:341–3.

    Article  CAS  PubMed  Google Scholar 

  25. Milas L, Mason K, Hunter N, et al. In vivo enhancement of tumor radioresponse by C225 antiepidermal growth factor receptor antibody. Clin Cancer Res. 2000;6:701–8.

    CAS  PubMed  Google Scholar 

  26. Milas L. Cyclooxygenase-2 (COX-2) enzyme inhibitors as potential enhancers of tumor radioresponse. Semin Radiat Oncol. 2001;11:290–9.

    Article  CAS  PubMed  Google Scholar 

  27. Fosslien E. Molecular pathology of cyclooxygenase-2 in neoplasia. Ann Clin Lab Sci. 2000;30:3–21.

    CAS  PubMed  Google Scholar 

  28. Masferrer JL, Leahy KM, Koki AT, et al. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res. 2000;60:1306–11.

    CAS  PubMed  Google Scholar 

  29. Petrova TV, Makinen T, Alitalo K. Signaling via vascular endothelial growth factor receptors. Exp Cell Res. 1999;253:117–30.

    Article  CAS  PubMed  Google Scholar 

  30. Pepper MS, Montesano R, Mandriota SJ, et al. Angiogenesis: a paradigm for balanced extracellular proteolysis during cell migration and morphogenesis. Enzyme Protein. 1996;49:138–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukherji, A. (2018). Using Concurrent or Sequential Chemotherapy and Biomolecules. In: Basics of Planning and Management of Patients during Radiation Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-10-6659-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6659-7_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6658-0

  • Online ISBN: 978-981-10-6659-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics