Skip to main content

Robotic Fabrication Techniques for Material of Unknown Geometry

  • Chapter
  • First Online:
Humanizing Digital Reality

Abstract

Both natural materials such as timber and low-grade or recycled materials are extremely variable in quality and geometry in unprocessed state. Additive digital fabrication processes in robotics in combination with sensor feedback techniques offer large design freedom, high precision and material efficiency and enable a highly customized fabrication and calculation process. Separate studies have been made on scanning, efficient algorithmic arrangement and automated assembly of structures of variable timber elements. In this paper we explore a robotic fabrication process, in which we combine the techniques of scanning, digitally arranging and robotically assembling in one continuous real-time workflow. This means that the final design and appearance only emerge after a unique fabrication process, corresponding to the material used and the assembly sequence. We describe techniques for the simulation modelling and performance analysis using particle simulation, and demonstrate the feasibility through the realisation of the envelope of a robotically assembled double-story timber structure with hand-split wood plates of varying dimensions. We discuss a future use of natural, low-grade or waste material in the building industry through robotic processes. We conclude by analysing the integration of qualitative analysis, physical simulation and the degree of variability of input material and resulting complexity in the computation and fabrication process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • ABB Robotics.: Application manual-SoftMove. Robot documentation M 2004 (2011)

    Google Scholar 

  • ABB Robotics.: Application manual PC SDK, ABB AB Robotic products. pp. 204–217 (2015)

    Google Scholar 

  • Beyer-Holzschindel GmbH. http://www.holzschindel.at/holzschindeln/ratgeber. Accessed 30 April 2017

  • Bock, T.: Construction robotics. Auton. Robots 22(3), 201–209 (2007). doi:10.1007/s10514-006-9008-5

    Article  Google Scholar 

  • Certain Measures, Mining the scrap. http://certainmeasures.com/mts_installation.html. Accessed 19 Feb 2017

  • Csokmai, L., Ovidiu, M.: Architecture of a flexible manufacturing cell control application (2014)

    Google Scholar 

  • Dalvand, M., Nahavandi, S.: Teleoperation of ABB industrial robots. Ind. Robot Int. J. 41(3), 286–295 (2014)

    Article  Google Scholar 

  • Dörfler, K., Sandy, T., Giftthaler, M., Gramazio, F., Kohler, M., Buchli, J.: Mobile Robotic Brickwork, Robotic Fabrication in Architecture, Art and Design 2016. Springer (2017). doi:10.1007/978-3-319-26378-6_15

  • Furrer, F., Wermelinger, M., Yoshida, H., Gramazio, F., Kohler, M., Siegwart, R., Hutter, M.: Autonomous robotic stone stacking with online next best object target pose planning, IRCA 2017. In: Proceedings of IEEE International Conference on Robotics and Automation (2017)

    Google Scholar 

  • Jeffers, M.: Autonomous Robotic Assembly with Variable Material Properties, Robotic Fabrication in Architecture, Art and Design, pp. 48–61. Springer, New York (2016)

    Google Scholar 

  • Landa-Hurtado, L.R., Mamani-Macaya, F.A., Fuentes-Maya, M., Mendoza-Garcia, R.F.: Kinect-based trajectory teaching for industrial robots. In: Pan-American Congress of Applied Mechanics (PACAM) (2014)

    Google Scholar 

  • Mollica, Z., Self, M.: Tree Fork Truss. Advances in Architectural Geometry 2016, vdf Hochschulverlag AG an der ETH Zürich (2016). doi:10.3218/3778-4_9

  • Monier, V., Bignon, J.-C., Duchanois, G.: Use of irregular wood components to design non-standard structures. Adv. Mater. Res. 671–674, 2337–2343 (2013). doi:10.4028/www.scientific.net/AMR.671-674.2337

    Article  Google Scholar 

  • Niemiec, S.S., Brown, T.D.: Care and maintenance of wood shingle and shake roofs. Oregon State University Extension Service, EC 1271 (1993)

    Google Scholar 

  • Piacentino, G.: Grasshopper Python, McNeel & Associates. http://www.food4rhino.com/app/ghpython. Accessed 19 Feb 2017

  • Raspall, F., Amtsberg, F., Peters, F.: Material feedback in robotic production. In: Robotic Fabrication in Architecture, Art and Design 2014. Springer, New York, pp. 333–345 (2014)

    Google Scholar 

  • Realflow. www.realflow.com. Last Accessed 15 May 2017

  • Schindler, C., Tamke, M., Tabatabai, A., Bereuter, M., Yoshida, H.: Processing branches: reactivating the performativity of natural wooden form with contemporary information technology. Int. J. Archit. Comput. 12(2), 101–115 (2014). doi:10.1260/1475-472X.12.2.101

    Article  Google Scholar 

  • Self, M., Vercruysse, M.: Infinite variations, radical strategies. In: Menges, A., Sheil, B., Glynn, R., Skavara, M. (eds.) Fabricate 2017, pp. 30–35. Ucl Press, London, (2017). http://www.jstor.org/stable/j.ctt1n7qkg7.8

  • Stanton, C.: Digitally mediated use of localized material in architecture. In: Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, SIGraDi 2010, Bogotá, Colombia, November 17–19, pp. 228–231 (2010)

    Google Scholar 

  • Tan, K.: Water simulation using realflow. Insight 03, Chapter 02, enclos. http://bit.ly/2r20wQh. Last Accessed 15 May 2017

  • Tang, P., Huber, D., Akinci, B., Lipman, R., Lytle, A.: Automatic reconstruction of as-built building information models from laser-scanned point clouds: a review of related techniques. Autom. Constr. 19, 829–843 (2010)

    Article  Google Scholar 

  • Vähä, P., Heikkilä, T., Kilpeläinen, P., Järviluoma, M., Gambao, E.: Extending automation of building construction—survey on potential sensor technologies and robotic applications. Autom. Constr. 36, 168–178 (2013). doi:10.1016/j.autcon.2013.08.002

    Article  Google Scholar 

Download references

Acknowledgements

The case study project was realized in the framework of a Master class on digital fabrication with the students Jay Chenault, Alessandro Dell’Endice, Matthias Helmreich, Nicholas Hoban, Jesús Medina, Pietro Odaglia, Federico Salvalaio and Stavroula Tsafou. This study was supported by the NCCR Digital Fabrication, funded by the Swiss National Science Foundation (NCCR Digital Fabrication Agreement # 51NF40-141853). We would like to thank Philippe Fleischmann and Mike Lyrenmann for their countless efforts in helping to create our robotic setup and the companies Schilliger Holz AG, Rothoblaas, Krinner Ag, ABB and BAWO Befestigungstechnik AG for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Eversmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Eversmann, P. (2018). Robotic Fabrication Techniques for Material of Unknown Geometry. In: De Rycke, K., et al. Humanizing Digital Reality. Springer, Singapore. https://doi.org/10.1007/978-981-10-6611-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6611-5_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6610-8

  • Online ISBN: 978-981-10-6611-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics