Advertisement

Strategies for Biological Control and Antagonisms

  • Ane S. Simionato
  • Miguel O. P. Navarro
  • André R. Barazetti
  • Igor M. O. dos Santos
  • Flavia R. Spago
  • Andreas L. Chryssafidis
  • Galdino AndradeEmail author
Chapter

Abstract

Microorganisms play an important niche in the control of soil populations producing a variety of bioactive compounds as an ecological strategy for competition for space and nutrients. Thus, the bioprospecting of microorganisms as potential antagonists for pathogen biocontrol, or obtaining their bioactive metabolites, is one of the alternatives currently studied for the control of diseases, especially in species of agronomic importance. In this chapter, we reviewed several microorganisms and how, in general, the products of their metabolism are obtained to be used in the control of pathogens.

Keywords

Bioactive compounds Secondary metabolism Bioprospecting Purification 

References

  1. Alymanesh M, Taheri P, Tarighi S (2016) Pseudomonas as a frequent and important quorum quenching bacterium with biocontrol capability against many phytopathogens. Biocontrol Sci Tech 26:1719–1735CrossRefGoogle Scholar
  2. Axel C, Zannini E, Coffey A, Guo J, Waters DM, Arendt EK (2012) Ecofriendly control of potato late blight causative agent and the potential role of lactic acid bacteria: a review. Appl Microbiol Biotechnol 96:37–48CrossRefPubMedGoogle Scholar
  3. Aysan Y, Karatas A, Cinar O (2003) Biological control of bacterial stem rot caused by Erwinia chrysanthemi on tomato. Crop Prot 22:807–811CrossRefGoogle Scholar
  4. Banani H, Spadaro D, Zhang D, Matic S, Garibaldi A, Gullino ML (2015) Postharvest application of a novel chitinase cloned from Metschnikowia fructicola and overexpressed in Pichia pastoris to control brown rot of peaches. Int J Food Microbiol 199:54–61CrossRefPubMedGoogle Scholar
  5. Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58(1):1–26Google Scholar
  6. Bérdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot 65:385–395CrossRefPubMedGoogle Scholar
  7. Bettiol W, Morandi MAB, Pinto ZV, Júnior TJP, Corrêa EB, MouraAB LCMM, Costa JCB, Bezerra JL (2012) Produtos Comerciais à base de agentes de biocontrole de doenças de plantas. Embrapa Meio Ambiente, JaguariúnaGoogle Scholar
  8. Bhattacharjee R, Dey U (2014) An overview of fungal and bacterial biopesticides to control plant pathogens/diseases. Afr J Microbiol Res 8:1749–1762CrossRefGoogle Scholar
  9. Bi Y, Yu Z (2016) Diterpenoids from Streptomyces sp. SN194 and their antifungal activity against Botrytis cinerea. J Agric Food Chem 64:8525–8529CrossRefPubMedGoogle Scholar
  10. Bokhove M, Jimenez PN, Quax WJ, Dijkstra BW (2010) The quorum-quenching N-acyl homoserine lactone acylase PvdQ is an Ntn-hydrolase with an unusual substrate-binding pocket. Proc Natl Acad Sci 107:686–691CrossRefPubMedGoogle Scholar
  11. Borrero C, Ordovás J, Trillas MI, Avilés M (2006) Tomato fusarium wilt suppressiveness. The relationship between the organic plant growth media and their microbial communities as characterised by biolog. Soil Biol Biochem 38:1631–1637CrossRefGoogle Scholar
  12. Borrero C, Trillas MI, Avilés M (2009) Carnation Fusarium wilt suppression in four composts. Eur J Plant Pathol 123:425–433CrossRefGoogle Scholar
  13. Cardozo VF, Oliveira AG, Nishio EK, Perugini MRE, Andrade CGTJ, Silveira WD, Durán N, Andrade G, Kobayashi RKT, Nakazato G (2013) Antibacterial activity of extracellular compounds produced by a Pseudomonas strain against methicillin-resistant Staphylococcus aureus (MRSA) strains. Ann Clin Microbiol Antimicrob 12:1–8CrossRefGoogle Scholar
  14. Chet I (1987) Innovative approaches to plant disease control. 372 pGoogle Scholar
  15. Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ (2003) Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol 157:503–523CrossRefGoogle Scholar
  16. Cordero-Ramírez JD, López-Rivera R, Figueroa-Lopez AM, Mancera-López ME, Martínez-Álvarez JC, Apodaca-Sánchez MA, Maldonado-MendozaI E (2013) Native soil bacteria isolates in Mexico exhibit a promising antagonistic effect against Fusarium oxysporum f sp radicis-lycopersici. J Basic Microbiol 53:838–847PubMedGoogle Scholar
  17. De Oliveira AG, Murate LS, Spago FR, Lopes LP, Beranger JPO, San Martin JAB, Nogueira MA, Mello JCP, Andrade CGTJ, Andrade G (2011) Evaluation of the antibiotic activity of extracellular compounds produced by the Pseudomonas strain against the Xanthomonas citri pv. citri 306 strain. Biol Control 56:125–131CrossRefGoogle Scholar
  18. De Oliveira AG, Spago FR, Simionato AS, Navarro MO, Silva CS, Barazetti AR, Cely MV, Tischer CA, San Martin JA, Andrade CG, Novello CR, Mello JC, Andrade G (2016) Bioactive organocopper compound from Pseudomonas aeruginosa inhibits the growth of Xanthomonas citri subsp. citri. Front Microbiol 7:1–12Google Scholar
  19. Eilenberg J, Hajek A, Lomer C (2001) Suggestions for unifying the terminology in biological control. BioControl 46:387–400CrossRefGoogle Scholar
  20. El-Banna N, Winkelmann G (1998) Pyrrolnitrin from Burkholderia cepacia: antibiotic activity against fungi and novel activities against streptomycetes. J Appl Microbiol 85:69–76CrossRefPubMedGoogle Scholar
  21. Elkahouia S, Djébali N, Karkouch I, Ibrahim AH, Kalai L, Bachkouel S, Tabbene O, Limam F (2014) Mass spectrometry identification of antifungal lipopeptides from Bacillus sp. BCLRB2 against Rhizoctonia Solani and Sclerotinia Sclerotiorum. Appl Biochem Microbiol 50:161–165CrossRefGoogle Scholar
  22. Emiliano J (2016) Componentes do metabolismo secundário bacteriano com potencial inibitório sobre Sclerotinia sclerotiorum. Dissertation, Universidade Estadual de Ponta Grossa.Google Scholar
  23. Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359CrossRefPubMedGoogle Scholar
  24. Gade A, Ingle A, Whiteley C, Rai M (2010) Mycogenic metal nanoparticles: progress and applications. Biotechnol Lett 32:593–600CrossRefPubMedGoogle Scholar
  25. Ge B, Liu B, Nwet TT, Zhao W, Shi L, Zhang K (2016) Bacillus methylotrophicus Strain NKG-1, isolated from Changbai Mountain, China, has potential applications as a biofertilizer or biocontrol Agent. PLoS One 11:1–13Google Scholar
  26. Großkinsky DK, Tafner R, Moreno MV, Stenglein SA, Salamone IEG, Nelson LM, Novák O, Strnad M, van der Graaff E, Roitsh T (2016) Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Sci Rep 6:1–11CrossRefGoogle Scholar
  27. Gupta CP, Kumar B, Dubey RC, Maheshwari DK (2006) Chitinase-mediated destructive antagonistic potential of Pseudomonas aeruginosa GRC1 against Sclerotinia sclerotiorum causing stem rot of peanut. BioControl 51:821–835CrossRefGoogle Scholar
  28. Haidar H, Roudeta J, Bonnarda O, Dufoura MC, Corio-Costeta MF, Ferta M, Gautiera T, Deschampsa A, Fermauda M (2016) Screening and modes of action of antagonistic bacteria to control the fungal pathogen Phaeomoniella chlamydospora involved in grapevine trunk diseases. Microbiol Res 192:172–184CrossRefPubMedGoogle Scholar
  29. Hamid R, Khan MA, Ahmad M, Ahmad MM (2013) Chitinases: An update. J Pharm Bioallied Sci 5:21–29PubMedPubMedCentralGoogle Scholar
  30. Han JH, Shim H, Shin JH, Kim KS (2015) Antagonistic activities of Bacillus spp. strains isolated from tidal flat sediment towards anthracnose pathogens Colletotrichum acutatum and C. gloeosporioides in South Korea. Plant Pathol J 31:165–175CrossRefPubMedPubMedCentralGoogle Scholar
  31. Harman GE (2000) Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzinum T-22. Plant Dis 84:377–393CrossRefGoogle Scholar
  32. Hu W, Gao Q, Hamada MS, Dawood DH, Zheng J, Chen Y, Ma Z (2014) Potential of Pseudomonas chlororaphis subsp. Aurantiaca Strain Pcho10 as a biocontrol agent against Fusarium graminearum. Phytopathology 104:1289–1297CrossRefPubMedGoogle Scholar
  33. Junaid JM, Dar NA, Bhat TA, Bhat AH, Bhat MA (2013) commercial biocontrol agents and their mechanism of action in the management of plant pathogens. Int J Mod Plant Anim Sci 1:39–57Google Scholar
  34. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74:2171–2178CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kasprzewska A (2003) Plant chitinases-Regulation and function. Cell Mol Biol Lett 8:809–824PubMedGoogle Scholar
  36. Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11:371–384CrossRefPubMedGoogle Scholar
  37. Ligon JM, Hill DS, Hammer PE, Torkewitz NR, Hofmann D, Kempf HJ, van Pee KH (2000) Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manage 56:688–695CrossRefGoogle Scholar
  38. Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schäberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517(7535):455–459Google Scholar
  39. Lopes LP, de Oliveira AG, Beranger JPO, Góis CG, Vasconcellos FCS, San Martin JAB, Andrade CGTJ, Mello JCP, Andrade G (2012) Activity of extracellular compounds of Pseudomonas sp. against Xanthomonas axonopodis in vitro and bacterial leaf blight in eucalyptus. Trop Plant Pathol 37:233–238CrossRefGoogle Scholar
  40. Madigan MT, Martinko JM, Dunlap PV, Clark DP (2010) Microbiologia Industrial. In: Madigan MT, Martinko JM, Dunlap PV, Clark DP Microbiologia de Brock. 12 edn. Porto Alegre: Artmed 734-760Google Scholar
  41. Marrone PG (2014) The market and potential for biopesticides. In: Biopesticides: state of the art and future opportunities. American Chemical Society, Washington, DC, pp 245–258Google Scholar
  42. Mathre DE, Cook RJ, Callan NW (1999) From discovery to use – traversing the world of commercializing biocontrol agents for plant disease control. Plant Dis 83:971–983CrossRefGoogle Scholar
  43. McCormack PJ, Bailey MJ, Jeffries P (1994) An artificial wax substrate for the in vitro study of phylloplane micro-organisms. J Microbiol Methods 19:19–28CrossRefGoogle Scholar
  44. Melo IS (1991) Potencialidades de utilização de Trichoderma spp. no controle biológico de doenças de plantas. In: Bettiol W (Org.) Controle biológico de doenças de plantas. EMBRAPA, Brasília, p 388Google Scholar
  45. Molina L, Constantinescu F, Michel L, Reimmann C, Duffy B, Défago G (2003) Degradation of pathogen quorum-sensing molecules by soil bacteria: a preventive and curative biological control mechanism. FEMS Microbiol Ecol 45:71–81CrossRefPubMedGoogle Scholar
  46. Narayana KJP, Prabhakar P, Vijayalakshmi M, Venkateswarlu Y, Krishna PSJ (2008) Study on bioctive compounds from Streptomyces sp. ANU 6277. Polish J Microbiol 57:35–39Google Scholar
  47. Niu J, Chen J, Xu Z, Zhu X, Wu Q, Li J (2016) Synthesis and bioactivities of amino acid ester conjugates of phenazine-1-carboxylic acid. Bioorg Med Chem Lett 26:5384–5386CrossRefPubMedGoogle Scholar
  48. Nawrocka J, Małolepsza U (2013) Diversity in plant systemic resistance induced by Trichoderma. Biol Control 67(2):149–156Google Scholar
  49. Olorunleke FE, Hua GKH, Kieu NP, Ma Z, Höfte M (2015) Interplay between orfamides, sessilins and phenazines in the control of Rhizoctonia diseases by Pseudomonas sp. CRM12a. Environ Microbiol Rep 7:774–781CrossRefPubMedGoogle Scholar
  50. Olson S (2015) An analysis of the biopesticide market now and where it is going. Outlooks Pest Manag 26:203–206CrossRefGoogle Scholar
  51. Paulitz TC, Bélanger RR (2001) Biological control in greenhouse systems. Ann Rev Phytophatol 39:103–133CrossRefGoogle Scholar
  52. Pierson LS III, Pierson EA (2010) Metabolism and function of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 86:1659–1670CrossRefPubMedPubMedCentralGoogle Scholar
  53. Rampazo LGL (2004) Avaliação de agentes biológicos e seus produtos na incidência de lesões foliares do Cancro Cítrico. Dissertation, Universidade Estadual de LondrinaGoogle Scholar
  54. Ravensberg JW (2015) Commercialisation of microbes: present situation and future prospects. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer, Leiden, pp 309–317Google Scholar
  55. Schneider JK, Taraz H, Budzikiewicz P, Jacques P, Thonart (1999) The structure of two fengycins from Bacillus subtilis S499. Z Naturforsch 54:859–865Google Scholar
  56. Shanmugaiah V, Mathivanan N, Varghese B (2010) Purification, crystal structure and antimicrobial activity of phenazine-1-carboxamide produced by a growth-promoting biocontrol bacterium, Pseudomonas aeruginosa MML2212. J Appl Microbiol 108:703–711CrossRefPubMedGoogle Scholar
  57. Silvertein RM, Webster F, Kiemle D (2005) Spectrometric identification of organic compounds, 7th edn. Wiley, HobokenGoogle Scholar
  58. Singh PP, Shin YC, Park CS, Chung YR (1999) Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Biol Control 89:92–99Google Scholar
  59. Solomons T, Fryhle CB (2000) Química Orgânica, 7th edn. LTC editora, Rio de Janeiro, p 1Google Scholar
  60. Suk WS, Son HJ, Lee G, Lee SJ (1999) Purification and characterization of biosurfactants produced by Pseudomonas sp. SW 1. J Microbiol Biotechnol 9:56–61Google Scholar
  61. Tani A, Takeuchi T, Horita H (1990) Biological control of scab, black scurf and soft roto f potato by seed tuber bacterization. In: Homey D (ed) Biological control of soil borne plant pathogens. CAB International, Wallingford, pp 143–164Google Scholar
  62. Tempest DW, Wouters J (1981) Properties and performance of microorganisms in chemostat culture. Enzym Microb Technol 3:283–290CrossRefGoogle Scholar
  63. Trias R, Bañeras L, Montesinos E, Badosa E (2008) Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. Int Microbiol 11:231–236PubMedGoogle Scholar
  64. Tupe SG, Kulkarni RR, Shirazi F, Sant DG, Joshi SP, Deshpande MV (2015) Possible mechanism of antifungal phenazine-1-carboxamide from sp. against dimorphic fungi and human pathogen. J Appl Microbiol 118(1):39–48Google Scholar
  65. Vasconcellos FCS, de Oliveira AG, Lopes-Santos L, Beranger JPO, Cely MVT, Simionato AS, Pistori JF, Spago FR, Mello JCP, San Martin JAB, Andrade CGTJ, Andrade G (2014) Evaluation of antibiotic activity produced by Pseudomonas aeruginosa LV strain against Xanthomonas arborícola pv. pruni. Agric Sci 5:71–76Google Scholar
  66. Woo SL, Ruocco M, Vinale F, Nigro M, Marra R, Lombardi N, Pascale A, Lanzuise S, Manganiello G, Lorito M (2014) Trichoderma-based products and their widespread use in agriculture. Open Mycol J 8:71–126CrossRefGoogle Scholar
  67. Wu B, Wang X, Yang L, Yang H, Zeng H, Qiu Y, Wang C, Yu J, Li J, Xu D, He Z, Chen S (2016) Effects of Bacillus amyloliquefaciensZM9 on bacterial wilt and rhizosphere microbial communities of tobacco. App Soil Ecol 103:1–12CrossRefGoogle Scholar
  68. Yu GY, Sinclair JB, Hartman GL, Bertagnolli BL (2002) Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem 34:955–963CrossRefGoogle Scholar
  69. Zhang LH, Dong YH (2004) Quorum sensing and signal interference: diverse implications. Mol Microbiol 53:1563–1571CrossRefPubMedGoogle Scholar
  70. Zhang Y, Wang C, Su P, Liao X (2015) Control effects and possible mechanism of the natural compound Phenazine-1-Carboxiamide against Botrytis cinerea. PLoS One 10:1–17Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Ane S. Simionato
    • 1
  • Miguel O. P. Navarro
    • 1
  • André R. Barazetti
    • 1
  • Igor M. O. dos Santos
    • 1
  • Flavia R. Spago
    • 2
  • Andreas L. Chryssafidis
    • 3
  • Galdino Andrade
    • 1
    Email author
  1. 1.Laboratory of Microbial Ecology, Department of MicrobiologyState University of LondrinaLondrinaBrazil
  2. 2.Federal Institute of Espírito SantoEspírito SantoBrazil
  3. 3.Laboratory of Veterinary Toxicology, Department of Preventive Veterinary MedicineState University of LondrinaLondrinaBrazil

Personalised recommendations