Skip to main content

Microbial Interactions and Perspectives for Bioremediation of Pesticides in the Soils

  • Chapter
  • First Online:
Plant-Microbe Interactions in Agro-Ecological Perspectives

Abstract

Microbes with uncountable number of species represent the most abundant organisms on earth. Microorganism plays vital role in the pesticide bioremediation. Pesticide biodegradation capacity exhibited by soil microbes is among the major factor limiting contamination and preserving the resilience of soil. Numerous studies are dedicated over bioremediation of pesticides through different microbial species. The biotransformations in natural system is a common process and many times necessary for the survival of microorganisms, leading to biological degradation of applied pesticides. Microbial evolution and bioremediation exhibits a natural balance between them. Bioremediation through microbes reflects numerous benefits, for instance, there is least possibility of environmental disturbance, economical, and lesser likelihood of secondary exposure along with no disturbance to the ecosystem. Owing to these reasons, the isolation and characterization of microbial species with the capability of pesticide bioremediation are gaining attention of scientists from last many years.

The present chapter includes information about different microbial species, including bacteria, cyanobacteria, and fungi employed in the bioremediation of pesticides. Furthermore, an attempt is taken to cover different metagenomics studies where researchers aimed to uncover the bioremediation potential linked with unculturable microbial communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdel-Shafy HI, Mansour MSM (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25(1):107–123

    Article  Google Scholar 

  • Abo-Amer AE (2011) Biodegradation of diazinon by Serratia marcescens DI101 and its use in bioremediation of contaminated environment. J Microbiol Biotechnol 21(1):71–80

    Article  CAS  PubMed  Google Scholar 

  • Akbar S, Sultan S (2016) Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement. Braz J Microbiol 47(3):563–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Hasan RH, Al-Bader DA, Sorkhoh NA, Radwan SS (1998) Evidence for n-alkane consumption and oxidation by filamentous cyanobacteria from oil-contaminated coasts of the Arabian Gulf. Mar Biol 130:521–527

    Article  CAS  Google Scholar 

  • Al-Hasan RH, Khanafer M, Eliyas M, Radwan SS (2001) Hydrocarbon accumulation by picocyanobacteria from the Arabian Gulf. J Appl Microbiol 91:533–540

    Article  CAS  PubMed  Google Scholar 

  • Alvarez A, Benimeli CS, Saez JM, Fuentes MS, Cuozzo SA, Polti MA, Amoroso MJ (2012) Bacterial bio-resources for remediation of hexachlorocyclohexane. Int J Mol Sci 13(11):15086–15106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong RN (1994) Glutathione S-transferases: structure and mechanism of an archetypical detoxication enzyme. Adv Enzymol Relat Areas Mol Biol 69:1–44

    CAS  PubMed  Google Scholar 

  • Arora PK, Sharma A, Bae H (2015) Microbial degradation of indole and its derivatives. J Chem 2015:1–33

    Google Scholar 

  • Arunakumara KKIU, Walpola BC, Yoon M-H (2013) Metabolism and degradation of glyphosate in aquatic cyanobacteria: a review. Afr J Microbiol Res 7(32):4084–4090

    CAS  Google Scholar 

  • Barragán-Huerta BE, Costa-Pérez C, Peralta-Cruz J, Barrera-Cortés J, Esparza-García F, Rodríguez-Vázquez R (2007) Biodegradation of organochlorine pesticides by bacteria grown in microniches of the porous structure of green bean coffee. Int Biodeterior Biodegrad 59(3):239–244

    Article  CAS  Google Scholar 

  • Bending GD, Friloux M, Walker A (2002) Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. FEMS Microbiol Lett 212:59–63

    Article  CAS  PubMed  Google Scholar 

  • Bhalerao TS, Puranik PR (2007) Biodegradation of organochlorine pesticide, endosulfan, by a fungal soil isolate, Aspergillus niger. Int Biodeterior Biodegrad 59(4):315–321

    Article  CAS  Google Scholar 

  • Briceño G, Fuentes MS, Palma G, Jorquera MA, Amoroso MJ, Diez MC (2012) Chlorpyrifos biodegradation and 3,5,6-trichloro-2-pyridinol production by actinobacteria isolated from soil. Int Biodeterior Biodegrad 73:1–7

    Article  CAS  Google Scholar 

  • Buchel KH (1983) Chemistry of pesticides, vol 9. Wiley, New York, pp 22–24

    Google Scholar 

  • Burrows HD, Canle LM, Santaballa JA, Steenken S (2002) Reaction pathways and mechanisms of photodegradation of pesticides. J Photochem Photobiol B Biol 67:71–108

    Article  CAS  Google Scholar 

  • Cáceres TP, Megharaj M, Naidu R (2008) Biodegradation of the pesticide fenamiphos by ten different species of green algae and cyanobacteria. Curr Microbiol 57(6):643–646

    Article  PubMed  CAS  Google Scholar 

  • Cerniglia CE, Baalen CV, Gibson DT (1980a) Oxidation of biphenyl by the cyanobacterium, Oscillatoria sp. strain JCM. Arch Microbiol 125:203–207

    Article  CAS  PubMed  Google Scholar 

  • Cerniglia CE, Gibson DT, Baalen CV (1980b) Oxidation of naphthalene by cyanobacteria and microalgae. J Gen Microbiol 116:495–500

    CAS  Google Scholar 

  • Chaudhary P, Kumar M, Khangarot BS, Kumar A (2006) Degradation and detoxification of hexachlorocyclohexane isomers by Pseudomonas aeruginosa ITRC-5. Int Biodeterior Biodegrad 57(2):107–113

    Article  CAS  Google Scholar 

  • Chauhan A, Singh J (2015) Biodegradation of DDT. J Textile Sci Eng 5:183

    Google Scholar 

  • Chaussonnerie S, Saaidi PL, Ugarte E, Barbance A, Fossey A, Barbe V, Gyapay G, Brüls T, Chevallier M, Couturat L, Fouteau S, Muselet D, Pateau E, Cohen GN, Fonknechten N, Weissenbach J, Le Paslier D (2016) Microbial degradation of a recalcitrant pesticide: chlordecone. Front Microbiol 7:2025

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen S, Lai K, Li Y, Hu M, Zhang Y, Zeng Y (2011) Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01. Appl Microbiol Biotechnol 90(4):1471–1483

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Liu C, Peng C, Liu H, Hu M, Zhong G (2012) Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by a new fungal strain Cladosporium cladosporioides Hu-01. PLoS One 7(10):e47205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chikere CB (2013) Application of molecular microbiology techniques in bioremediation of hydrocarbons and other pollutants. Br Biotechnol J 3(1):90–115

    Article  CAS  Google Scholar 

  • Cui Z-l, Cui L-x, Huang Y, Yan X, He J, S-p L (2012) Advances and application of microbial degradation in pesticides pollution remediation. Nanjing Nongye Daxue Xuebao 35(5):93–102

    CAS  Google Scholar 

  • Damalas CA, Eleftherohorinos IG (2011) Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Public Health 8(5):1402–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:1–13

    Google Scholar 

  • De Schrijver A, De Mot R (1999) Degradation of pesticides by actinomycetes, critical review. Microbiology 25(2):85–119

    Google Scholar 

  • Dechesne A, Badawi N, Aamand J, Smets BF (2014) Fine scale spatial variability of microbial pesticide degradation in soil: scales, controlling factors, and implications. Front Microbiol 5:667

    Article  PubMed  PubMed Central  Google Scholar 

  • Dennis P, Edwards EA, Liss SN, Fulthorpe R (2003) Monitoring gene expression in mixed microbial communities by using DNA microarrays. Appl Environ Microbiol 69:769–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diez MC (2010) Biological aspects involved in the degradation of organic pollutants. J Soil Sci Plant Nutr 10(3):244–267

    Article  Google Scholar 

  • El-Bestawy EA, Abd El-Salam AZ, Mansy AERH (2007) Potential use of environmental cyanobacterial species in bioremediation on lindane-contaminated effluents. Int Biodeterior Biodegrad 59:180–192. https://doi.org/10.1016/j.ibiod.2006.12.005

    Article  CAS  Google Scholar 

  • El-Fantroussi S, Naveau H, Agathos SS (1998) Anaerobic dechlorinating Bacteria. Biotechnol Prog 14:167–188

    Article  CAS  PubMed  Google Scholar 

  • Fan X, Liu X, Huang R, Liu Y (2012) Identification and characterization of a novel thermostable pyrethroid-hydrolyzing enzyme isolated through metagenomic approach. Microb Cell Factories 11:33

    Article  CAS  Google Scholar 

  • Fang H, Dong B, Yan H, Tang F, Yunlong Y (2010) Characterization of a bacterial strain capable of degrading DDT congeners and its use in bioremediation of contaminated soil. J Hazard Mater 184(1–3):281–289

    Article  CAS  PubMed  Google Scholar 

  • Fang H, Cai L, Yang Y, Ju F, Li X, Yu Y, Zhang T (2014) Metagenomic analysis reveals potential biodegradation pathways of persistent pesticides in freshwater and marine sediments. Sci Total Environ 470–471:983–992

    Article  PubMed  CAS  Google Scholar 

  • Fioravante IA, Barbosa FA, Augusti R, Magalhães SM (2010) Removal of methyl parathion by cyanobacteria Microcystis novacekii under culture conditions. J Environ Monit 12(6):1302–1306

    Article  CAS  PubMed  Google Scholar 

  • Forlani G, Pavan M, Gramek M, Kafarski P, Lipok J (2008) Biochemical basis for a wide spread tolerance of cyanobacteria to the phosphonate herbicide glyphosate. Plant Cell Physiol 49:443–456

    Article  CAS  PubMed  Google Scholar 

  • Foster LJR, Kwan BH, Vancov T (2004) Microbial degradation of the organophosphate pesticide. FEMS Microbiol Lett 240(1):49–53

    Article  CAS  PubMed  Google Scholar 

  • Guillén-Jiménez FDM, Cristiani-Urbina E, Cancino-Díaz JC, Flores-Moreno JL, Barragán-Huerta BE (2012) Lindane biodegradation by the Fusarium verticillioides AT-100 strain, isolated from Agave tequilana leaves: kinetic study and identification of metabolites. Int Biodeterior Biodegrad 74:36–47

    Article  CAS  Google Scholar 

  • Guohui W (2004) Selection of high efficient degrading strains and study on its degrading capability, vol 8. Huanjing Baohu, Beijing

    Google Scholar 

  • Gupta US (2005) Biodegradation of chlorinated hydrocarbon insecticide by Pseudomonas species. Himalayan J Environ Zool 19(1):1–10

    CAS  Google Scholar 

  • Gupta A, Kaushik CP, Kaushik A (2001) Degradation of hexachlorocyclohexane isomers by two strains of Alcaligenes faecalis isolated from a contaminated site. Bull Environ Contam Toxicol 66:794–800

    Article  CAS  PubMed  Google Scholar 

  • Guschin DY, Mobarry BK, Proudnikov D, Stahl DA, Rittman BE, Mirzabekov AD (1997) Oligonucleotide microchips as genosensors for determinative and environmental studies in microbiology. Appl Environ Microbiol 63:2397–2402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ha J, Engler CR, Wild JR (2009) Biodegradation of coumaphos, chlorferon, and diethylthiophosphate using bacteria immobilized in Ca-alginate gel beads. Bioresour Technol 100(3):1138–1142

    Article  CAS  PubMed  Google Scholar 

  • Hai FI, Modin O, Yamamoto K, Fukushi K, Nakajima F, Nghiem LD (2012) Pesticide removal by a mixed culture of bacteria and white-rot fungi. J Taiwan Inst Chem Eng 43(3):459–462

    Article  CAS  Google Scholar 

  • Hamme JDV, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67(4):503–549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harada N, Takagi K, Harazono A, Fujii K, Iwasaki A (2006) Isolation and characterization of microorganisms capable of hydrolysing the herbicide mefenacet. Soil Biol Biochem 38(1):173–179

    Article  CAS  Google Scholar 

  • Hatzios KK (1995) Biotransformation of herbicides in higher plants. In: Grover R, Cessna AJ (eds) Environmental Chemistry of Herbicides. CRC Press, Boca Raton, pp 141–185

    Google Scholar 

  • Hong L, Zhang JJ, Wang SJ, Zhang XE, Zhou NY (2005) Plasmid-Borne Catabolism of Methyl Parathion and p-Nitrophenol in Pseudomonas sp. strain WBC-3. Biochem Biophys Res Commun 334(4):1107–1114

    Article  CAS  Google Scholar 

  • Ibrahim WM, Essa AMM (2010) Tolerance, biodegradation and utilization of malathion, an organophosphorous pesticide, by some cyanobacterial isolates. Egypt J Bot 27–29:225–240

    Google Scholar 

  • Ibrahim WM, Karam MA, El-Shahat RM, Adway AA (2014) Biodegradation and utilization of organophosphorus pesticide malathion by cyanobacteria. Biomed Res Int 2014:1–6

    Google Scholar 

  • Itoh H, Navarro R, Takeshita K, Tago K, Hayatsu M, Hori T, Kikuchi Y (2014) Bacterial population succession and adaptation affected by insecticide application and soil spraying history. Front Microbiol 5:457

    Article  PubMed  PubMed Central  Google Scholar 

  • Javaid MK, Ashiq M, Tahir M (2016) Potential of biological agents in decontamination of agricultural soil. Scientifica (Cairo) 2016:1598325

    Google Scholar 

  • Jayashree R, Vasudevan N (2007a) Organochlorine pesticide residues in ground water of Thiruvallur district, India. Environ Monit Assess 128(1–3):209–215

    Article  CAS  PubMed  Google Scholar 

  • Jayashree R, Vasudevan N (2007b) Persistence and distribution of endosulfan under field conditions. Environ Monit Assess 131(1–3):475–487

    Article  CAS  PubMed  Google Scholar 

  • Joutey NT, Bahafid W, Sayel H, Ghachtouli NE (2013) Biodegradation: involved microorganisms and genetically engineered microorganisms. In: Chamy R (ed) Biodegradation – life of science. InTech, Croatia

    Google Scholar 

  • Kandpal V (2014) Biopesticides. Int J Environ Res Dev 4:191–196

    Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enz Res 2011:1–11

    Article  CAS  Google Scholar 

  • Kataoka R, Takagi K, Sakakibara F (2010) A new endosulfan-degrading fungus, Mortierella species, isolated from a soil contaminated with organochlorine pesticides. J Pestic Sci 35(3):326–332

    Article  CAS  Google Scholar 

  • Kehinde FO, Isaac SA (2016) Effectiveness of augmented consortia of Bacillus coagulans, Citrobacter koseri and Serratia ficaria in the degradation of diesel polluted soil supplemented with pig dung. Afr J Microbiol Res 10(39):1637–1644

    Article  Google Scholar 

  • Krishna KR, Philip L (2009) Biodegradation of mixed pesticides by mixed pesticide enriched cultures. J Environ Sci Health 44(1):18–30

    Article  CAS  Google Scholar 

  • Kumar S, Mukerji KG, Lal R (1996) Molecular aspects of pesticide degradation by microorganisms. Crit Rev Microbiol 22(1):1–26

    Article  CAS  PubMed  Google Scholar 

  • Kuritz T, Wolk CP (1995) Use of filamentous cyanobacteria for biodegradation of organic pollutants. Appl Environ Microbiol 61(1):234–238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kye CM, Reukaradhya M, Islam K (2009) Biodegradation of chlorpyrifos by lactic acid bacteria during kimchi fermentation. J Agric Food Chem 57(5):1882–1889

    Article  CAS  Google Scholar 

  • Ladino-Orjuela G, Gomes E, Silva R, Salt C, Parsons JR (2016) Metabolic pathways for degradation of aromatic hydrocarbons by bacteria. In: de Vooge WP (ed) Reviews of environmental contamination and toxicology vol. 237. Springer, Cham, pp 105–121

    Chapter  Google Scholar 

  • Langlois BE, Collins JA, Sides KG (1970) Some factors affecting degradation of organochlorine pesticide by bacteria. J Dairy Sci 53(12):1671–1675

    Article  CAS  PubMed  Google Scholar 

  • Leadbetter JR (2003) Cultivation of recalcitrant microbes: cells are alive, well and revealing their secrets in the 21st century laboratory. Curr Opin Microbiol 6:274–281

    Article  CAS  PubMed  Google Scholar 

  • Leewis M, Uhlik O, Leigh MB (2016) Synergistic processing of biphenyl and benzoate: Carbon flow through the bacterial community in polychlorinated-biphenyl-contaminated soil. Sci Rep 6:22145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Liang W, Wu X, Liu Y (2004) Research on biodegradation of organophosphorus insecticide by a novel psychrotrophic bacterium SA-8. Zhongshan Daxue Xuebao, Ziran Kexueban 43(3):131–132

    CAS  Google Scholar 

  • Li G, Wang K, Liu YH (2008) Molecular cloning and characterization of a novel pyrethroid-hydrolyzing esterase originating from the Metagenome. Microb Cell Factories 7:38

    Article  CAS  Google Scholar 

  • Lio M, Xie X (2009) Application of enterobacteraerogenes in degrading pyrethroid pesticide residue, and preparation with enterobacteraerogenes. Faming Zhuanli Shenqing, CN102021135 A

    Google Scholar 

  • Lipok J, Owsiak T, MÅ‚ynarz P, Forlani G, Kafarski P (2007) Phosphorus NMR as a tool to study mineralization of organophosphonates-the ability of Spirulina spp. to degrade glyphosate. Enzym Microb Technol 41:286–291

    Article  CAS  Google Scholar 

  • Lipok J, Wieczorek D, Jewginski M, Kafarski P (2009) Prospects of in vivo 31P NMR method in glyphosate degradation studies in whole cell system. Enzym Microb Technol 44:11–16

    Article  CAS  Google Scholar 

  • Liu Z, Hong Q, JH X, Wu J, Zhang XZ, Zhang XH, Ma AZ, Zhu J, Li SP (2003) Cloning, analysis and fusion expression of methyl parathion hydrolase. Acta Genet Sin 30(11):1020–1026

    CAS  Google Scholar 

  • Liu J, Wang L, Zheng L, Wang X, Lee FSC (2006) Analysis of bacteria degradation products of methyl parathion by liquid chromatography/electrospray time-of-flight mass spectrometry and gas chromatography/mass spectrometry. J Chromatogr A 1137(2):180–187

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Yang C, Ch-L Q (2007) Biodegradation of p-nitrophenol and 4-chlorophenol by Stenotrophomonas sp. FEMS Microbiol Lett 277(2):150–156

    Article  CAS  PubMed  Google Scholar 

  • Madhuban G, Debashis D, Das SK (2011) Biodegradation of imidacloprid and metribuzin by Burkholderia cepacia strain CH9. Pestic Res J 23(1):36–40

    Google Scholar 

  • Malghani S, Chatterjee N, HX Y, Luo Z (2009) Isolation and identification of profenofos degrading bacteria. Braz J Microbiol 40(4):893–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manickam N, Pathak A, Saini HS, Mayilraj S, Shanker R (2010) Metabolic profiles and phylogenetic diversity of microbial communities from chlorinated pesticides contaminated sites of different geographical habitats of India. J Appl Microbiol 109(4):1458–1468

    Article  CAS  PubMed  Google Scholar 

  • Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47:127–158

    Article  CAS  PubMed  Google Scholar 

  • Matsumura F, Boush GM, Tai A (1968) Breakdown of dieldrin in the soil by a microorganism. Nature 219(5157):965–967

    Article  CAS  PubMed  Google Scholar 

  • McGuinness M, Dowling D (2009) Plant-associated bacterial degradation of toxic organic compounds in soil. Int J Environ Res Public Health 6(8):2226–2247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Megharaj M, Venkateswarlu K, Rao AS (1987) Metabolism of monocrotophos and quinalphos by algae isolated from soil. Bull Environ Contam Toxicol 39:251–256

    Article  CAS  PubMed  Google Scholar 

  • Megharaj M, Madhavi DR, Sreenivasulu C, Umamaheswari A, Venkateswarlu K (1994) Biodegradation of methyl parathion by soil isolates of microalgae and cyanobacteria. Bull Environ Contam Toxicol 53:292–297

    Article  CAS  PubMed  Google Scholar 

  • Mendoza JC, Perea Y, Salvador JA (2011) Bacterial biodegradation of permetrina and cipermetrina pesticides in a culture assemblage. Avances en Ciencias e Ingenieria 2(3):45–55

    CAS  Google Scholar 

  • Mulbry W, Kearney PC (1991) Degradation of pesticides by microorganisms and the potential for genetic manipulation. Crop Prot 10:334–346

    Article  CAS  Google Scholar 

  • Mwangi K, Boga HI, Muigai AW, Kiiyukia C, Tsanuo MK (2010) Degradation of dichlorodiphenyltrichloroethane (DDT) by bacterial isolates from cultivated and uncultivated soil. Afr J Microbiol Res 4(3):185–196

    CAS  Google Scholar 

  • Myers JP, Antoniou MN, Blumberg B, Carroll L, Colborn T, Everett LG, Hansen M, Landrigan PJ, Lanphear BP, Mesnage R, Vandenberg LN, vom Saal FS, Welshons WV, Benbrook CM (2016) Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement. Environ Health 15:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Narro ML, Cerniglia CE, Baalen CV, Gibson DT (1992) Metabolism of phenanthrene by the marine cyan bacterium Agmenellum quadruplicatum strain PR-6. Appl Environ Microbiol 58:1351–1359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nyakundi WO, Magoma G, Ochora J, Nyende AB (2011) Biodegradation of diazinon and methomyl pesticides by white rot fungi from selected horticultural farms in rift valley. J Appl Technol Environ Sanit 1(2):107–124

    CAS  Google Scholar 

  • Odukkathil G, Vasudevan N (2013) Toxicity and bioremediation of pesticides in agricultural soil. Rev Environ Sci Biotechnol 12(4):421–444

    Article  CAS  Google Scholar 

  • Ojo OA (2007) Molecular strategies of microbial adaptation to xenobiotics in natural environment. Biotechnol Mol Biol Rev 2(1):001–013

    Google Scholar 

  • Ortega SN, Nitschke M, Mouad AM et al (2011) Isolation of Brazilian marine fungi capable of growing on DDD pesticide. Biodegradation 22(1):43–50

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Hernández ML, Sánchez-Salinas E (2010) Biodegradation of the organophosphate pesticide tetrachlorvinphos by bacteria isolated from agricultural soils in México. Rev Int Contam Ambient 26(1):27–38

    Google Scholar 

  • Ouyang ZC, Wang YH, Li XN et al (2008) Test of pesticide degradability by Sphingomonas yanoikuyae XJ strain. Huanan Nongye Daxue Xuebao 29(2):47–49

    CAS  Google Scholar 

  • Paingankar M, Jain M, Deobagkar D (2005) Biodegradation of allethrin, a pyrethroid insecticide, by an Acidomonas sp. Biotechnol Lett 27(23-24):1909–1913

    Article  CAS  PubMed  Google Scholar 

  • Palanisami S, Prabaharan D, Uma L (2009) Fate of few pesticide-metabolizing enzymes in the marine cyanobacterium Phormidium valderianum BDU 20041 in perspective with chlorpyrifos exposure. Pestic Biochem Physiol 94(2–3):68–72

    Article  CAS  Google Scholar 

  • Patil KC, Matsumura F, Boush GM (1970) Degradation of Endrin, Aldrin, and DDT by soil microorganisms. J Appl Microbiol 19(5):879–881

    CAS  Google Scholar 

  • Pinto AP, Serrano C, Pires T et al (2012) Degradation of terbuthylazine, difenoconazole and pendimethalin pesticides by selected fungi cultures. Sci Total Environ 435–436:402–410

    Article  PubMed  CAS  Google Scholar 

  • Porto ALM, Melgar GZ, Kasemodel MC, Nitschke M (2011) Biodegradation of pesticides, pesticides in the modern world. In: Stoytcheva M (ed) Pesticides use and management. InTech, Croatia. ISBN: 978-953-307-459-7

    Google Scholar 

  • Prabakaran V, Peterson A (2006) Effect of Pseudomonas on biodegradation of pesticide in the fish Cyprinus carpio. J Ecotoxicol Environ Monit 16(5):475–479

    CAS  Google Scholar 

  • Prüss-Ustün A, Vickers C, Haefliger P, Bertollini R (2011) Knowns and unknowns on burden of disease due to chemicals: a systematic review. Environ Health 10:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiao L, Wang J (2010) Biodegradation characterization of a pyridine-degrading strain. Qinghua Daxue Xuebao 50(6):869–872

    CAS  Google Scholar 

  • Qiao C-L, Yan Y-C, Shang HY, Zhou XT, Zhang Y (2003) Biodegradation of pesticides by immobilized recombinant Escherichia coli. Bull Environ Contam Toxicol 71(2):370–374

    Article  CAS  PubMed  Google Scholar 

  • Quintero JC, Lú-Chau TA, Moreira MT, Feijoo G, Lema J (2007) Bioremediation of HCH present in soil by the white-rot fungus Bjerkandera adusta in a slurry batch bioreactor. Int Biodeterior Biodegrad 60:319–326

    Article  CAS  Google Scholar 

  • Rani K, Dhania G (2014) Bioremediation and biodegradation of pesticide from contaminated soil and water – a noval approach. Int J Curr Microbiol App Sci 3(10):23–33

    Google Scholar 

  • Rochkind-Dubinsky ML, Sayler GS, Blackburn JW (1987) Microbiological decomposition of chlorinated aromatic compounds. Marcel Dekker. Inc, New York, pp 1–58

    Google Scholar 

  • Romeh AAA (2001) Biodegradation of carbosulfan, pirimicarb and diniconazole pesticides by Trichoderma spp. J Environ Res 3:162–172

    CAS  Google Scholar 

  • Rosselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25(1):39–67

    Article  PubMed  Google Scholar 

  • Rushmore TH, Pickett CB (1993) Glutathione S-transferases, structure, regulation, and therapeutic implications. J Biol Chem 268:11475–11478

    CAS  PubMed  Google Scholar 

  • Sabdono A, Radjasa OK (2008) Phylogenetic diversity of organophosphorous pesticide-degrading coral bacteria from Mid-West Coast of Indonesia. Biotechnology 7(4):694–701

    Article  CAS  Google Scholar 

  • Sagar V, Singh DP (2011) Biodegradation of lindane pesticide by non white- rots soil fungus Fusarium sp. World J Microbiol Biotechnol 27(8):1747–1754

    Article  CAS  Google Scholar 

  • Sangwan N, Lata P, Dwivedi V, Singh A, Niharika N et al (2012) Comparative metagenomic analysis of soil microbial communities across three hexachlorocyclohexane contamination levels. PLoS One 7(9):e46219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santacruz G, Bandala ER, Torres LG (2005) Chlorinated pesticides (2,4-D and DDT) biodegradation at high concentrations using immobilized Pseudomonas fluorescens. J Environ Sci Health 40(4):571–583

    Article  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Microbiol 14:303–310

    CAS  Google Scholar 

  • Schroll R, Brahushi F, Dörfler U, Kuehn S, Fekete J, Munch JC (2004) Biomineralization of 1,2,4-trichlorobenzene in soils by an adapted microbial population. Environ Pollut 127:395–401

    Article  CAS  PubMed  Google Scholar 

  • Seo J, Lee Y-G, Kim S-D, Cha C-J, Ahn J-H, Hur H-G (2005) Biodegradation of the insecticide N,N-diethyl-m-toluamide by fungi: identification and toxicity of metabolites. Arch Environ Contam Toxicol 48(3):323–328

    Article  CAS  PubMed  Google Scholar 

  • Seo J, Keum Y, Li QX (2009) Bacterial degradation of aromatic compounds. Int J Environ Res Public Health 6(1):278–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanahan P (2004) Bioremediation. Waste containment and remediation technology. Springer, Cham

    Google Scholar 

  • Shimabukuro RH (1985) Detoxification of herbicides. In: Duke SO (ed) Weed Physiology, vol 2. CRC Press, Boca Raton, pp 215–240

    Google Scholar 

  • Shunpeng L, Mingxing Z (2006) Sphingomonas strain for degrading chlorophenothane pesticide residue and bacteria agent containing this strain. Faming Zhuanli Shenqing Gongkai Shuomingshu

    Google Scholar 

  • Shunpeng L, Shen LZ (2005) Pseudomonas putida and its bacterial products for degrading organophosphorus pesticide residues. Faming Zhuanli Shenqing Gongkai Shuomingshu

    Google Scholar 

  • Shun-Peng L, Ruifu Z, Jian-Dong J, et al (2005) Ochrobactrum MP-4 and its products for degrading residues of triazophos-based pesticide. Faming Zhuanli Shenqing Gongkai Shuomingshu

    Google Scholar 

  • Singh KD (2008) Biodegradation and bioremediation of pesticide in soil: concept, method and recent developments. Indian J Microbiol 48:35–40

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh BK, Kuhad RC (1999) Biodegradation of lindane by the white-rot fungus Trametes hirsutus. Lett Appl Microbiol 28:238–241

    Article  CAS  PubMed  Google Scholar 

  • Singh BK, Kuhad RC (2000) Degradation of the pesticide lindane by white-rot fungi Cyathus bulleri and Phanerochaete sordida. Pest Manag Sci 56:142–146

    Article  CAS  Google Scholar 

  • Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiology Rev 30:428–471

    Article  CAS  Google Scholar 

  • Singh BK, Kuhad RC, Singh A, Lal R, Triapthi KK (1999) Biochemical and molecular basis of pesticide degradation by microorganisms. Crit Rev Biotechnol 19:197–225

    Article  CAS  PubMed  Google Scholar 

  • Singh JS, Singh DP, Dixit S (2011) Cyanobacteria: an agent of heavy metal removal. In: Maheshwari DK, Dubey RC (eds) Bioremediation of pollutants. IK International Publisher Co, New Delhi, pp 223–243

    Google Scholar 

  • Singh JS, Kumar A, Rai AN, Singh DP (2016) Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol 7:529. https://doi.org/10.3389/fmicb.2016.00529

    PubMed  PubMed Central  Google Scholar 

  • Sinha S, Chattopadhyay P, Pan I, Chatterjee S, Chanda P, Bandyopadhyay D, Das K, Sen SK (2009) Microbial transformation of xenobiotics for environmental bioremediation. Afr J Biotechnol 8(22):6016–6027

    Article  CAS  Google Scholar 

  • Slaoui M, Ouhssine M, Berny E, Elyachioui M (2007) Biodegradation of the carbofuran by a fungus isolated from treated soil. Afr J Biotechnol 6(4):419–423

    CAS  Google Scholar 

  • Sokhoh NA, Al-Hasan RH, Radwan SS, Hopner T (1992) Self-cleaning of the Gulf. Nature 359:109

    Article  Google Scholar 

  • Subramanian G, Sekar S, Sampoornam S (1994) Biodegradation and utilization of organophosphorus pesticides by cyanobacteria. Int Biodeterior Biodegrad 33:129–143

    Article  Google Scholar 

  • Swarcewicz MK, Gregorczyk A (2012) The effects of pesticide mixtures on degradation of pendimethalin in soils. Environ Monit Assess 184(5):3077–3084

    Article  CAS  PubMed  Google Scholar 

  • Tingting L, Kunming D, Miao L et al (2012) Isolation, identification and biodegradation characteristics of a bacterial strain able to degrade bifenthrin. Nongye Huanjing KexueXuebao 31(6):1147–1152

    Google Scholar 

  • Torsvik V, Qvreas L (2002) Microbial diversity and function in soil: from genes to ecosystem. Curr Opin Microbiol 5:240–245

    Article  CAS  PubMed  Google Scholar 

  • Uqab B, Mudasir S, Nazir R (2016) Review on bioremediation of pesticides. J Bioremed Biodeg 7:343

    Google Scholar 

  • Vijayakumar S (2012) Potential applications of cyanobacteria in industrial effluents- a review. J Bioremed Biodeg 3:1–6

    Google Scholar 

  • Walker A, Roberts SJ (1993) Degradation, biodegradation and enhanced biodegradation. In: Proceeding of 9th symposium pesticide chemistry: the chemistry, mobility and degradation of xenobiotics, Piacenza, Italy

    Google Scholar 

  • WHO/UNEP (1990) Public health impact of pesticides use in agriculture, vol 10. WHO/UNEP, Geneva, pp 110–119

    Google Scholar 

  • Wyss A, Boucher J, Montero A, Marison I (2006) Micro-encapsulated organic phase for enhanced bioremediation of hydrophobic organic pollutants. Enzym Microb Technol 40(1):25–31

    Article  CAS  Google Scholar 

  • Xie S, Liu J, Li L, Qiao C (2009) Biodegradation of malathion by Acinetobacter johnsonii MA19 and optimization of cometabolism substrates. J Environ Sci 21(1):76–82

    Article  CAS  Google Scholar 

  • Xue-Dong W, Xiao-Ming O, Hui-Li W et al (2003) Optimized cultivation of highly-efficient bacterial strains and their biodegradation ability towards imazapyr. Nongye Huanjing Kexue Xuebao 22(1):102–105

    Google Scholar 

  • Yang L, Zhao YH, Zhang BX, Yang CH, Zhang X (2005) Isolation and characterization of a chlorpyrifos and 3, 5, 6- trichloro-2-pyridinol degrading bacterium. FEMS Microbiol Lett 251:67–73

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Li X, Liu Y, Zhang D, Zhang S, Luo X (2012) Biodegradation of cypermethrin by rhodopseudomonas palustris GJ-22 isolated from activated sludge. Fresenius Environ Bull A 21(2):397–405

    CAS  Google Scholar 

  • Yuanfan H, Jin Z, Qing H, Qian W, Jiandong J, Shunpeng L (2010) Characterization of a fenpropathrin-degrading strain and construction of a genetically engineered microorganism for simultaneous degradation of methyl parathion and fenpropathrin. J Environ Manag 91(11):2295–2300

    Article  CAS  Google Scholar 

  • Yu-Suo L, Yi-Gang X, Li-Li S et al (2003) Study on biodegradation and removal of pesticide residue in soil and plant system. Nongye Huanjing Kexue Xuebao 22(2):221–223

    Google Scholar 

  • Zacharia JT, Margarita S (2011) Identity physical and chemical properties of pesticides. Pestic Mod World 8:978–953

    Google Scholar 

  • Zeinat K, Nashwa AH, Ibrahim M (2008) Biodegradation and detoxification of malathion by of bacillus thuringiensis MOS-5. Aust J Basic Appl Sci 2(3):724–732

    CAS  Google Scholar 

  • Zhang D, Xinqiu T, Xiangwen L (2005) Isolation of photosynthetic bacteria HP-1 with degradation of organicphosphorus insecticides and studies on its biodegradation ability and capacity of increasing growth. Shengming Kexue Yanjiu 9(3):247–253

    Google Scholar 

  • Zhang X, Wu W, Zhang Y et al (2007) Screening of efficient hydrocarbon-degrading strains and study on influence factors of degradation of refinery oily sludge. Ind Eng Chem Res 46(26):8910–8917

    Article  CAS  Google Scholar 

  • Zhang J, Sun Z, Li Y, Peng X, Li W, Yan Y (2009) Biodegradation of p-nitrophenol by Rhodococcus sp. CN6 with high cell surface hydrophobicity. J Hazard Mater 163(2-3):723–728

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Jiang X, Lu L, Xiao W (2015) Biodegradation of polychlorinated biphenyls (PCBs) by the novel identified cyanobacterium Anabaena PD-1. PLoS One 10(7):e0131450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

Ratna Prabha is thankful to the Science and Engineering Research Board (SERB) for financial support in terms of the SERB National Post Doctoral Fellowship (Grant No.: PDF/2016/000714).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ratna Prabha or M. K. Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prabha, R., Singh, D.P., Verma, M.K. (2017). Microbial Interactions and Perspectives for Bioremediation of Pesticides in the Soils. In: Singh, D., Singh, H., Prabha, R. (eds) Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-10-6593-4_27

Download citation

Publish with us

Policies and ethics