Microbial Interactions and Perspectives for Bioremediation of Pesticides in the Soils

  • Ratna PrabhaEmail author
  • D. P. Singh
  • M. K. VermaEmail author


Microbes with uncountable number of species represent the most abundant organisms on earth. Microorganism plays vital role in the pesticide bioremediation. Pesticide biodegradation capacity exhibited by soil microbes is among the major factor limiting contamination and preserving the resilience of soil. Numerous studies are dedicated over bioremediation of pesticides through different microbial species. The biotransformations in natural system is a common process and many times necessary for the survival of microorganisms, leading to biological degradation of applied pesticides. Microbial evolution and bioremediation exhibits a natural balance between them. Bioremediation through microbes reflects numerous benefits, for instance, there is least possibility of environmental disturbance, economical, and lesser likelihood of secondary exposure along with no disturbance to the ecosystem. Owing to these reasons, the isolation and characterization of microbial species with the capability of pesticide bioremediation are gaining attention of scientists from last many years.

The present chapter includes information about different microbial species, including bacteria, cyanobacteria, and fungi employed in the bioremediation of pesticides. Furthermore, an attempt is taken to cover different metagenomics studies where researchers aimed to uncover the bioremediation potential linked with unculturable microbial communities.


Bioremediation Bacteria Cyanobacteria Fungi Metagenomics Pesticides Biodegradation 



Ratna Prabha is thankful to the Science and Engineering Research Board (SERB) for financial support in terms of the SERB National Post Doctoral Fellowship (Grant No.: PDF/2016/000714).


  1. Abdel-Shafy HI, Mansour MSM (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25(1):107–123CrossRefGoogle Scholar
  2. Abo-Amer AE (2011) Biodegradation of diazinon by Serratia marcescens DI101 and its use in bioremediation of contaminated environment. J Microbiol Biotechnol 21(1):71–80PubMedCrossRefGoogle Scholar
  3. Akbar S, Sultan S (2016) Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement. Braz J Microbiol 47(3):563–570PubMedPubMedCentralCrossRefGoogle Scholar
  4. Al-Hasan RH, Al-Bader DA, Sorkhoh NA, Radwan SS (1998) Evidence for n-alkane consumption and oxidation by filamentous cyanobacteria from oil-contaminated coasts of the Arabian Gulf. Mar Biol 130:521–527CrossRefGoogle Scholar
  5. Al-Hasan RH, Khanafer M, Eliyas M, Radwan SS (2001) Hydrocarbon accumulation by picocyanobacteria from the Arabian Gulf. J Appl Microbiol 91:533–540PubMedCrossRefGoogle Scholar
  6. Alvarez A, Benimeli CS, Saez JM, Fuentes MS, Cuozzo SA, Polti MA, Amoroso MJ (2012) Bacterial bio-resources for remediation of hexachlorocyclohexane. Int J Mol Sci 13(11):15086–15106PubMedPubMedCentralCrossRefGoogle Scholar
  7. Armstrong RN (1994) Glutathione S-transferases: structure and mechanism of an archetypical detoxication enzyme. Adv Enzymol Relat Areas Mol Biol 69:1–44PubMedGoogle Scholar
  8. Arora PK, Sharma A, Bae H (2015) Microbial degradation of indole and its derivatives. J Chem 2015:1–33Google Scholar
  9. Arunakumara KKIU, Walpola BC, Yoon M-H (2013) Metabolism and degradation of glyphosate in aquatic cyanobacteria: a review. Afr J Microbiol Res 7(32):4084–4090Google Scholar
  10. Barragán-Huerta BE, Costa-Pérez C, Peralta-Cruz J, Barrera-Cortés J, Esparza-García F, Rodríguez-Vázquez R (2007) Biodegradation of organochlorine pesticides by bacteria grown in microniches of the porous structure of green bean coffee. Int Biodeterior Biodegrad 59(3):239–244CrossRefGoogle Scholar
  11. Bending GD, Friloux M, Walker A (2002) Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. FEMS Microbiol Lett 212:59–63PubMedCrossRefGoogle Scholar
  12. Bhalerao TS, Puranik PR (2007) Biodegradation of organochlorine pesticide, endosulfan, by a fungal soil isolate, Aspergillus niger. Int Biodeterior Biodegrad 59(4):315–321CrossRefGoogle Scholar
  13. Briceño G, Fuentes MS, Palma G, Jorquera MA, Amoroso MJ, Diez MC (2012) Chlorpyrifos biodegradation and 3,5,6-trichloro-2-pyridinol production by actinobacteria isolated from soil. Int Biodeterior Biodegrad 73:1–7CrossRefGoogle Scholar
  14. Buchel KH (1983) Chemistry of pesticides, vol 9. Wiley, New York, pp 22–24Google Scholar
  15. Burrows HD, Canle LM, Santaballa JA, Steenken S (2002) Reaction pathways and mechanisms of photodegradation of pesticides. J Photochem Photobiol B Biol 67:71–108CrossRefGoogle Scholar
  16. Cáceres TP, Megharaj M, Naidu R (2008) Biodegradation of the pesticide fenamiphos by ten different species of green algae and cyanobacteria. Curr Microbiol 57(6):643–646PubMedCrossRefGoogle Scholar
  17. Cerniglia CE, Baalen CV, Gibson DT (1980a) Oxidation of biphenyl by the cyanobacterium, Oscillatoria sp. strain JCM. Arch Microbiol 125:203–207PubMedCrossRefGoogle Scholar
  18. Cerniglia CE, Gibson DT, Baalen CV (1980b) Oxidation of naphthalene by cyanobacteria and microalgae. J Gen Microbiol 116:495–500Google Scholar
  19. Chaudhary P, Kumar M, Khangarot BS, Kumar A (2006) Degradation and detoxification of hexachlorocyclohexane isomers by Pseudomonas aeruginosa ITRC-5. Int Biodeterior Biodegrad 57(2):107–113CrossRefGoogle Scholar
  20. Chauhan A, Singh J (2015) Biodegradation of DDT. J Textile Sci Eng 5:183Google Scholar
  21. Chaussonnerie S, Saaidi PL, Ugarte E, Barbance A, Fossey A, Barbe V, Gyapay G, Brüls T, Chevallier M, Couturat L, Fouteau S, Muselet D, Pateau E, Cohen GN, Fonknechten N, Weissenbach J, Le Paslier D (2016) Microbial degradation of a recalcitrant pesticide: chlordecone. Front Microbiol 7:2025PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chen S, Lai K, Li Y, Hu M, Zhang Y, Zeng Y (2011) Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01. Appl Microbiol Biotechnol 90(4):1471–1483PubMedCrossRefGoogle Scholar
  23. Chen S, Liu C, Peng C, Liu H, Hu M, Zhong G (2012) Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by a new fungal strain Cladosporium cladosporioides Hu-01. PLoS One 7(10):e47205PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chikere CB (2013) Application of molecular microbiology techniques in bioremediation of hydrocarbons and other pollutants. Br Biotechnol J 3(1):90–115CrossRefGoogle Scholar
  25. Cui Z-l, Cui L-x, Huang Y, Yan X, He J, S-p L (2012) Advances and application of microbial degradation in pesticides pollution remediation. Nanjing Nongye Daxue Xuebao 35(5):93–102Google Scholar
  26. Damalas CA, Eleftherohorinos IG (2011) Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Public Health 8(5):1402–1419PubMedPubMedCentralCrossRefGoogle Scholar
  27. Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:1–13Google Scholar
  28. De Schrijver A, De Mot R (1999) Degradation of pesticides by actinomycetes, critical review. Microbiology 25(2):85–119Google Scholar
  29. Dechesne A, Badawi N, Aamand J, Smets BF (2014) Fine scale spatial variability of microbial pesticide degradation in soil: scales, controlling factors, and implications. Front Microbiol 5:667PubMedPubMedCentralCrossRefGoogle Scholar
  30. Dennis P, Edwards EA, Liss SN, Fulthorpe R (2003) Monitoring gene expression in mixed microbial communities by using DNA microarrays. Appl Environ Microbiol 69:769–778PubMedPubMedCentralCrossRefGoogle Scholar
  31. Diez MC (2010) Biological aspects involved in the degradation of organic pollutants. J Soil Sci Plant Nutr 10(3):244–267CrossRefGoogle Scholar
  32. El-Bestawy EA, Abd El-Salam AZ, Mansy AERH (2007) Potential use of environmental cyanobacterial species in bioremediation on lindane-contaminated effluents. Int Biodeterior Biodegrad 59:180–192. CrossRefGoogle Scholar
  33. El-Fantroussi S, Naveau H, Agathos SS (1998) Anaerobic dechlorinating Bacteria. Biotechnol Prog 14:167–188PubMedCrossRefGoogle Scholar
  34. Fan X, Liu X, Huang R, Liu Y (2012) Identification and characterization of a novel thermostable pyrethroid-hydrolyzing enzyme isolated through metagenomic approach. Microb Cell Factories 11:33CrossRefGoogle Scholar
  35. Fang H, Dong B, Yan H, Tang F, Yunlong Y (2010) Characterization of a bacterial strain capable of degrading DDT congeners and its use in bioremediation of contaminated soil. J Hazard Mater 184(1–3):281–289PubMedCrossRefGoogle Scholar
  36. Fang H, Cai L, Yang Y, Ju F, Li X, Yu Y, Zhang T (2014) Metagenomic analysis reveals potential biodegradation pathways of persistent pesticides in freshwater and marine sediments. Sci Total Environ 470–471:983–992PubMedCrossRefGoogle Scholar
  37. Fioravante IA, Barbosa FA, Augusti R, Magalhães SM (2010) Removal of methyl parathion by cyanobacteria Microcystis novacekii under culture conditions. J Environ Monit 12(6):1302–1306PubMedCrossRefGoogle Scholar
  38. Forlani G, Pavan M, Gramek M, Kafarski P, Lipok J (2008) Biochemical basis for a wide spread tolerance of cyanobacteria to the phosphonate herbicide glyphosate. Plant Cell Physiol 49:443–456PubMedCrossRefGoogle Scholar
  39. Foster LJR, Kwan BH, Vancov T (2004) Microbial degradation of the organophosphate pesticide. FEMS Microbiol Lett 240(1):49–53PubMedCrossRefGoogle Scholar
  40. Guillén-Jiménez FDM, Cristiani-Urbina E, Cancino-Díaz JC, Flores-Moreno JL, Barragán-Huerta BE (2012) Lindane biodegradation by the Fusarium verticillioides AT-100 strain, isolated from Agave tequilana leaves: kinetic study and identification of metabolites. Int Biodeterior Biodegrad 74:36–47CrossRefGoogle Scholar
  41. Guohui W (2004) Selection of high efficient degrading strains and study on its degrading capability, vol 8. Huanjing Baohu, BeijingGoogle Scholar
  42. Gupta US (2005) Biodegradation of chlorinated hydrocarbon insecticide by Pseudomonas species. Himalayan J Environ Zool 19(1):1–10Google Scholar
  43. Gupta A, Kaushik CP, Kaushik A (2001) Degradation of hexachlorocyclohexane isomers by two strains of Alcaligenes faecalis isolated from a contaminated site. Bull Environ Contam Toxicol 66:794–800PubMedCrossRefGoogle Scholar
  44. Guschin DY, Mobarry BK, Proudnikov D, Stahl DA, Rittman BE, Mirzabekov AD (1997) Oligonucleotide microchips as genosensors for determinative and environmental studies in microbiology. Appl Environ Microbiol 63:2397–2402PubMedPubMedCentralGoogle Scholar
  45. Ha J, Engler CR, Wild JR (2009) Biodegradation of coumaphos, chlorferon, and diethylthiophosphate using bacteria immobilized in Ca-alginate gel beads. Bioresour Technol 100(3):1138–1142PubMedCrossRefGoogle Scholar
  46. Hai FI, Modin O, Yamamoto K, Fukushi K, Nakajima F, Nghiem LD (2012) Pesticide removal by a mixed culture of bacteria and white-rot fungi. J Taiwan Inst Chem Eng 43(3):459–462CrossRefGoogle Scholar
  47. Hamme JDV, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67(4):503–549PubMedPubMedCentralCrossRefGoogle Scholar
  48. Harada N, Takagi K, Harazono A, Fujii K, Iwasaki A (2006) Isolation and characterization of microorganisms capable of hydrolysing the herbicide mefenacet. Soil Biol Biochem 38(1):173–179CrossRefGoogle Scholar
  49. Hatzios KK (1995) Biotransformation of herbicides in higher plants. In: Grover R, Cessna AJ (eds) Environmental Chemistry of Herbicides. CRC Press, Boca Raton, pp 141–185Google Scholar
  50. Hong L, Zhang JJ, Wang SJ, Zhang XE, Zhou NY (2005) Plasmid-Borne Catabolism of Methyl Parathion and p-Nitrophenol in Pseudomonas sp. strain WBC-3. Biochem Biophys Res Commun 334(4):1107–1114CrossRefGoogle Scholar
  51. Ibrahim WM, Essa AMM (2010) Tolerance, biodegradation and utilization of malathion, an organophosphorous pesticide, by some cyanobacterial isolates. Egypt J Bot 27–29:225–240Google Scholar
  52. Ibrahim WM, Karam MA, El-Shahat RM, Adway AA (2014) Biodegradation and utilization of organophosphorus pesticide malathion by cyanobacteria. Biomed Res Int 2014:1–6Google Scholar
  53. Itoh H, Navarro R, Takeshita K, Tago K, Hayatsu M, Hori T, Kikuchi Y (2014) Bacterial population succession and adaptation affected by insecticide application and soil spraying history. Front Microbiol 5:457PubMedPubMedCentralCrossRefGoogle Scholar
  54. Javaid MK, Ashiq M, Tahir M (2016) Potential of biological agents in decontamination of agricultural soil. Scientifica (Cairo) 2016:1598325Google Scholar
  55. Jayashree R, Vasudevan N (2007a) Organochlorine pesticide residues in ground water of Thiruvallur district, India. Environ Monit Assess 128(1–3):209–215PubMedCrossRefGoogle Scholar
  56. Jayashree R, Vasudevan N (2007b) Persistence and distribution of endosulfan under field conditions. Environ Monit Assess 131(1–3):475–487PubMedCrossRefGoogle Scholar
  57. Joutey NT, Bahafid W, Sayel H, Ghachtouli NE (2013) Biodegradation: involved microorganisms and genetically engineered microorganisms. In: Chamy R (ed) Biodegradation – life of science. InTech, CroatiaGoogle Scholar
  58. Kandpal V (2014) Biopesticides. Int J Environ Res Dev 4:191–196Google Scholar
  59. Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enz Res 2011:1–11CrossRefGoogle Scholar
  60. Kataoka R, Takagi K, Sakakibara F (2010) A new endosulfan-degrading fungus, Mortierella species, isolated from a soil contaminated with organochlorine pesticides. J Pestic Sci 35(3):326–332CrossRefGoogle Scholar
  61. Kehinde FO, Isaac SA (2016) Effectiveness of augmented consortia of Bacillus coagulans, Citrobacter koseri and Serratia ficaria in the degradation of diesel polluted soil supplemented with pig dung. Afr J Microbiol Res 10(39):1637–1644CrossRefGoogle Scholar
  62. Krishna KR, Philip L (2009) Biodegradation of mixed pesticides by mixed pesticide enriched cultures. J Environ Sci Health 44(1):18–30CrossRefGoogle Scholar
  63. Kumar S, Mukerji KG, Lal R (1996) Molecular aspects of pesticide degradation by microorganisms. Crit Rev Microbiol 22(1):1–26PubMedCrossRefGoogle Scholar
  64. Kuritz T, Wolk CP (1995) Use of filamentous cyanobacteria for biodegradation of organic pollutants. Appl Environ Microbiol 61(1):234–238PubMedPubMedCentralGoogle Scholar
  65. Kye CM, Reukaradhya M, Islam K (2009) Biodegradation of chlorpyrifos by lactic acid bacteria during kimchi fermentation. J Agric Food Chem 57(5):1882–1889CrossRefGoogle Scholar
  66. Ladino-Orjuela G, Gomes E, Silva R, Salt C, Parsons JR (2016) Metabolic pathways for degradation of aromatic hydrocarbons by bacteria. In: de Vooge WP (ed) Reviews of environmental contamination and toxicology vol. 237. Springer, Cham, pp 105–121CrossRefGoogle Scholar
  67. Langlois BE, Collins JA, Sides KG (1970) Some factors affecting degradation of organochlorine pesticide by bacteria. J Dairy Sci 53(12):1671–1675PubMedCrossRefGoogle Scholar
  68. Leadbetter JR (2003) Cultivation of recalcitrant microbes: cells are alive, well and revealing their secrets in the 21st century laboratory. Curr Opin Microbiol 6:274–281PubMedCrossRefGoogle Scholar
  69. Leewis M, Uhlik O, Leigh MB (2016) Synergistic processing of biphenyl and benzoate: Carbon flow through the bacterial community in polychlorinated-biphenyl-contaminated soil. Sci Rep 6:22145PubMedPubMedCentralCrossRefGoogle Scholar
  70. Li H, Liang W, Wu X, Liu Y (2004) Research on biodegradation of organophosphorus insecticide by a novel psychrotrophic bacterium SA-8. Zhongshan Daxue Xuebao, Ziran Kexueban 43(3):131–132Google Scholar
  71. Li G, Wang K, Liu YH (2008) Molecular cloning and characterization of a novel pyrethroid-hydrolyzing esterase originating from the Metagenome. Microb Cell Factories 7:38CrossRefGoogle Scholar
  72. Lio M, Xie X (2009) Application of enterobacteraerogenes in degrading pyrethroid pesticide residue, and preparation with enterobacteraerogenes. Faming Zhuanli Shenqing, CN102021135 AGoogle Scholar
  73. Lipok J, Owsiak T, Młynarz P, Forlani G, Kafarski P (2007) Phosphorus NMR as a tool to study mineralization of organophosphonates-the ability of Spirulina spp. to degrade glyphosate. Enzym Microb Technol 41:286–291CrossRefGoogle Scholar
  74. Lipok J, Wieczorek D, Jewginski M, Kafarski P (2009) Prospects of in vivo 31P NMR method in glyphosate degradation studies in whole cell system. Enzym Microb Technol 44:11–16CrossRefGoogle Scholar
  75. Liu Z, Hong Q, JH X, Wu J, Zhang XZ, Zhang XH, Ma AZ, Zhu J, Li SP (2003) Cloning, analysis and fusion expression of methyl parathion hydrolase. Acta Genet Sin 30(11):1020–1026Google Scholar
  76. Liu J, Wang L, Zheng L, Wang X, Lee FSC (2006) Analysis of bacteria degradation products of methyl parathion by liquid chromatography/electrospray time-of-flight mass spectrometry and gas chromatography/mass spectrometry. J Chromatogr A 1137(2):180–187PubMedCrossRefGoogle Scholar
  77. Liu Z, Yang C, Ch-L Q (2007) Biodegradation of p-nitrophenol and 4-chlorophenol by Stenotrophomonas sp. FEMS Microbiol Lett 277(2):150–156PubMedCrossRefGoogle Scholar
  78. Madhuban G, Debashis D, Das SK (2011) Biodegradation of imidacloprid and metribuzin by Burkholderia cepacia strain CH9. Pestic Res J 23(1):36–40Google Scholar
  79. Malghani S, Chatterjee N, HX Y, Luo Z (2009) Isolation and identification of profenofos degrading bacteria. Braz J Microbiol 40(4):893–900PubMedPubMedCentralCrossRefGoogle Scholar
  80. Manickam N, Pathak A, Saini HS, Mayilraj S, Shanker R (2010) Metabolic profiles and phylogenetic diversity of microbial communities from chlorinated pesticides contaminated sites of different geographical habitats of India. J Appl Microbiol 109(4):1458–1468PubMedCrossRefGoogle Scholar
  81. Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47:127–158PubMedCrossRefGoogle Scholar
  82. Matsumura F, Boush GM, Tai A (1968) Breakdown of dieldrin in the soil by a microorganism. Nature 219(5157):965–967PubMedCrossRefGoogle Scholar
  83. McGuinness M, Dowling D (2009) Plant-associated bacterial degradation of toxic organic compounds in soil. Int J Environ Res Public Health 6(8):2226–2247PubMedPubMedCentralCrossRefGoogle Scholar
  84. Megharaj M, Venkateswarlu K, Rao AS (1987) Metabolism of monocrotophos and quinalphos by algae isolated from soil. Bull Environ Contam Toxicol 39:251–256PubMedCrossRefGoogle Scholar
  85. Megharaj M, Madhavi DR, Sreenivasulu C, Umamaheswari A, Venkateswarlu K (1994) Biodegradation of methyl parathion by soil isolates of microalgae and cyanobacteria. Bull Environ Contam Toxicol 53:292–297PubMedCrossRefGoogle Scholar
  86. Mendoza JC, Perea Y, Salvador JA (2011) Bacterial biodegradation of permetrina and cipermetrina pesticides in a culture assemblage. Avances en Ciencias e Ingenieria 2(3):45–55Google Scholar
  87. Mulbry W, Kearney PC (1991) Degradation of pesticides by microorganisms and the potential for genetic manipulation. Crop Prot 10:334–346CrossRefGoogle Scholar
  88. Mwangi K, Boga HI, Muigai AW, Kiiyukia C, Tsanuo MK (2010) Degradation of dichlorodiphenyltrichloroethane (DDT) by bacterial isolates from cultivated and uncultivated soil. Afr J Microbiol Res 4(3):185–196Google Scholar
  89. Myers JP, Antoniou MN, Blumberg B, Carroll L, Colborn T, Everett LG, Hansen M, Landrigan PJ, Lanphear BP, Mesnage R, Vandenberg LN, vom Saal FS, Welshons WV, Benbrook CM (2016) Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement. Environ Health 15:19PubMedPubMedCentralCrossRefGoogle Scholar
  90. Narro ML, Cerniglia CE, Baalen CV, Gibson DT (1992) Metabolism of phenanthrene by the marine cyan bacterium Agmenellum quadruplicatum strain PR-6. Appl Environ Microbiol 58:1351–1359PubMedPubMedCentralGoogle Scholar
  91. Nyakundi WO, Magoma G, Ochora J, Nyende AB (2011) Biodegradation of diazinon and methomyl pesticides by white rot fungi from selected horticultural farms in rift valley. J Appl Technol Environ Sanit 1(2):107–124Google Scholar
  92. Odukkathil G, Vasudevan N (2013) Toxicity and bioremediation of pesticides in agricultural soil. Rev Environ Sci Biotechnol 12(4):421–444CrossRefGoogle Scholar
  93. Ojo OA (2007) Molecular strategies of microbial adaptation to xenobiotics in natural environment. Biotechnol Mol Biol Rev 2(1):001–013Google Scholar
  94. Ortega SN, Nitschke M, Mouad AM et al (2011) Isolation of Brazilian marine fungi capable of growing on DDD pesticide. Biodegradation 22(1):43–50PubMedCrossRefGoogle Scholar
  95. Ortiz-Hernández ML, Sánchez-Salinas E (2010) Biodegradation of the organophosphate pesticide tetrachlorvinphos by bacteria isolated from agricultural soils in México. Rev Int Contam Ambient 26(1):27–38Google Scholar
  96. Ouyang ZC, Wang YH, Li XN et al (2008) Test of pesticide degradability by Sphingomonas yanoikuyae XJ strain. Huanan Nongye Daxue Xuebao 29(2):47–49Google Scholar
  97. Paingankar M, Jain M, Deobagkar D (2005) Biodegradation of allethrin, a pyrethroid insecticide, by an Acidomonas sp. Biotechnol Lett 27(23-24):1909–1913PubMedCrossRefGoogle Scholar
  98. Palanisami S, Prabaharan D, Uma L (2009) Fate of few pesticide-metabolizing enzymes in the marine cyanobacterium Phormidium valderianum BDU 20041 in perspective with chlorpyrifos exposure. Pestic Biochem Physiol 94(2–3):68–72CrossRefGoogle Scholar
  99. Patil KC, Matsumura F, Boush GM (1970) Degradation of Endrin, Aldrin, and DDT by soil microorganisms. J Appl Microbiol 19(5):879–881Google Scholar
  100. Pinto AP, Serrano C, Pires T et al (2012) Degradation of terbuthylazine, difenoconazole and pendimethalin pesticides by selected fungi cultures. Sci Total Environ 435–436:402–410PubMedCrossRefGoogle Scholar
  101. Porto ALM, Melgar GZ, Kasemodel MC, Nitschke M (2011) Biodegradation of pesticides, pesticides in the modern world. In: Stoytcheva M (ed) Pesticides use and management. InTech, Croatia. ISBN: 978-953-307-459-7Google Scholar
  102. Prabakaran V, Peterson A (2006) Effect of Pseudomonas on biodegradation of pesticide in the fish Cyprinus carpio. J Ecotoxicol Environ Monit 16(5):475–479Google Scholar
  103. Prüss-Ustün A, Vickers C, Haefliger P, Bertollini R (2011) Knowns and unknowns on burden of disease due to chemicals: a systematic review. Environ Health 10:9PubMedPubMedCentralCrossRefGoogle Scholar
  104. Qiao L, Wang J (2010) Biodegradation characterization of a pyridine-degrading strain. Qinghua Daxue Xuebao 50(6):869–872Google Scholar
  105. Qiao C-L, Yan Y-C, Shang HY, Zhou XT, Zhang Y (2003) Biodegradation of pesticides by immobilized recombinant Escherichia coli. Bull Environ Contam Toxicol 71(2):370–374PubMedCrossRefGoogle Scholar
  106. Quintero JC, Lú-Chau TA, Moreira MT, Feijoo G, Lema J (2007) Bioremediation of HCH present in soil by the white-rot fungus Bjerkandera adusta in a slurry batch bioreactor. Int Biodeterior Biodegrad 60:319–326CrossRefGoogle Scholar
  107. Rani K, Dhania G (2014) Bioremediation and biodegradation of pesticide from contaminated soil and water – a noval approach. Int J Curr Microbiol App Sci 3(10):23–33Google Scholar
  108. Rochkind-Dubinsky ML, Sayler GS, Blackburn JW (1987) Microbiological decomposition of chlorinated aromatic compounds. Marcel Dekker. Inc, New York, pp 1–58Google Scholar
  109. Romeh AAA (2001) Biodegradation of carbosulfan, pirimicarb and diniconazole pesticides by Trichoderma spp. J Environ Res 3:162–172Google Scholar
  110. Rosselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25(1):39–67PubMedCrossRefGoogle Scholar
  111. Rushmore TH, Pickett CB (1993) Glutathione S-transferases, structure, regulation, and therapeutic implications. J Biol Chem 268:11475–11478PubMedGoogle Scholar
  112. Sabdono A, Radjasa OK (2008) Phylogenetic diversity of organophosphorous pesticide-degrading coral bacteria from Mid-West Coast of Indonesia. Biotechnology 7(4):694–701CrossRefGoogle Scholar
  113. Sagar V, Singh DP (2011) Biodegradation of lindane pesticide by non white- rots soil fungus Fusarium sp. World J Microbiol Biotechnol 27(8):1747–1754CrossRefGoogle Scholar
  114. Sangwan N, Lata P, Dwivedi V, Singh A, Niharika N et al (2012) Comparative metagenomic analysis of soil microbial communities across three hexachlorocyclohexane contamination levels. PLoS One 7(9):e46219PubMedPubMedCentralCrossRefGoogle Scholar
  115. Santacruz G, Bandala ER, Torres LG (2005) Chlorinated pesticides (2,4-D and DDT) biodegradation at high concentrations using immobilized Pseudomonas fluorescens. J Environ Sci Health 40(4):571–583CrossRefGoogle Scholar
  116. Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Microbiol 14:303–310Google Scholar
  117. Schroll R, Brahushi F, Dörfler U, Kuehn S, Fekete J, Munch JC (2004) Biomineralization of 1,2,4-trichlorobenzene in soils by an adapted microbial population. Environ Pollut 127:395–401PubMedCrossRefGoogle Scholar
  118. Seo J, Lee Y-G, Kim S-D, Cha C-J, Ahn J-H, Hur H-G (2005) Biodegradation of the insecticide N,N-diethyl-m-toluamide by fungi: identification and toxicity of metabolites. Arch Environ Contam Toxicol 48(3):323–328PubMedCrossRefGoogle Scholar
  119. Seo J, Keum Y, Li QX (2009) Bacterial degradation of aromatic compounds. Int J Environ Res Public Health 6(1):278–309PubMedPubMedCentralCrossRefGoogle Scholar
  120. Shanahan P (2004) Bioremediation. Waste containment and remediation technology. Springer, ChamGoogle Scholar
  121. Shimabukuro RH (1985) Detoxification of herbicides. In: Duke SO (ed) Weed Physiology, vol 2. CRC Press, Boca Raton, pp 215–240Google Scholar
  122. Shunpeng L, Mingxing Z (2006) Sphingomonas strain for degrading chlorophenothane pesticide residue and bacteria agent containing this strain. Faming Zhuanli Shenqing Gongkai ShuomingshuGoogle Scholar
  123. Shunpeng L, Shen LZ (2005) Pseudomonas putida and its bacterial products for degrading organophosphorus pesticide residues. Faming Zhuanli Shenqing Gongkai ShuomingshuGoogle Scholar
  124. Shun-Peng L, Ruifu Z, Jian-Dong J, et al (2005) Ochrobactrum MP-4 and its products for degrading residues of triazophos-based pesticide. Faming Zhuanli Shenqing Gongkai ShuomingshuGoogle Scholar
  125. Singh KD (2008) Biodegradation and bioremediation of pesticide in soil: concept, method and recent developments. Indian J Microbiol 48:35–40PubMedPubMedCentralCrossRefGoogle Scholar
  126. Singh BK, Kuhad RC (1999) Biodegradation of lindane by the white-rot fungus Trametes hirsutus. Lett Appl Microbiol 28:238–241PubMedCrossRefGoogle Scholar
  127. Singh BK, Kuhad RC (2000) Degradation of the pesticide lindane by white-rot fungi Cyathus bulleri and Phanerochaete sordida. Pest Manag Sci 56:142–146CrossRefGoogle Scholar
  128. Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiology Rev 30:428–471CrossRefGoogle Scholar
  129. Singh BK, Kuhad RC, Singh A, Lal R, Triapthi KK (1999) Biochemical and molecular basis of pesticide degradation by microorganisms. Crit Rev Biotechnol 19:197–225PubMedCrossRefGoogle Scholar
  130. Singh JS, Singh DP, Dixit S (2011) Cyanobacteria: an agent of heavy metal removal. In: Maheshwari DK, Dubey RC (eds) Bioremediation of pollutants. IK International Publisher Co, New Delhi, pp 223–243Google Scholar
  131. Singh JS, Kumar A, Rai AN, Singh DP (2016) Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol 7:529. PubMedPubMedCentralGoogle Scholar
  132. Sinha S, Chattopadhyay P, Pan I, Chatterjee S, Chanda P, Bandyopadhyay D, Das K, Sen SK (2009) Microbial transformation of xenobiotics for environmental bioremediation. Afr J Biotechnol 8(22):6016–6027CrossRefGoogle Scholar
  133. Slaoui M, Ouhssine M, Berny E, Elyachioui M (2007) Biodegradation of the carbofuran by a fungus isolated from treated soil. Afr J Biotechnol 6(4):419–423Google Scholar
  134. Sokhoh NA, Al-Hasan RH, Radwan SS, Hopner T (1992) Self-cleaning of the Gulf. Nature 359:109CrossRefGoogle Scholar
  135. Subramanian G, Sekar S, Sampoornam S (1994) Biodegradation and utilization of organophosphorus pesticides by cyanobacteria. Int Biodeterior Biodegrad 33:129–143CrossRefGoogle Scholar
  136. Swarcewicz MK, Gregorczyk A (2012) The effects of pesticide mixtures on degradation of pendimethalin in soils. Environ Monit Assess 184(5):3077–3084PubMedCrossRefGoogle Scholar
  137. Tingting L, Kunming D, Miao L et al (2012) Isolation, identification and biodegradation characteristics of a bacterial strain able to degrade bifenthrin. Nongye Huanjing KexueXuebao 31(6):1147–1152Google Scholar
  138. Torsvik V, Qvreas L (2002) Microbial diversity and function in soil: from genes to ecosystem. Curr Opin Microbiol 5:240–245PubMedCrossRefGoogle Scholar
  139. Uqab B, Mudasir S, Nazir R (2016) Review on bioremediation of pesticides. J Bioremed Biodeg 7:343Google Scholar
  140. Vijayakumar S (2012) Potential applications of cyanobacteria in industrial effluents- a review. J Bioremed Biodeg 3:1–6Google Scholar
  141. Walker A, Roberts SJ (1993) Degradation, biodegradation and enhanced biodegradation. In: Proceeding of 9th symposium pesticide chemistry: the chemistry, mobility and degradation of xenobiotics, Piacenza, ItalyGoogle Scholar
  142. WHO/UNEP (1990) Public health impact of pesticides use in agriculture, vol 10. WHO/UNEP, Geneva, pp 110–119Google Scholar
  143. Wyss A, Boucher J, Montero A, Marison I (2006) Micro-encapsulated organic phase for enhanced bioremediation of hydrophobic organic pollutants. Enzym Microb Technol 40(1):25–31CrossRefGoogle Scholar
  144. Xie S, Liu J, Li L, Qiao C (2009) Biodegradation of malathion by Acinetobacter johnsonii MA19 and optimization of cometabolism substrates. J Environ Sci 21(1):76–82CrossRefGoogle Scholar
  145. Xue-Dong W, Xiao-Ming O, Hui-Li W et al (2003) Optimized cultivation of highly-efficient bacterial strains and their biodegradation ability towards imazapyr. Nongye Huanjing Kexue Xuebao 22(1):102–105Google Scholar
  146. Yang L, Zhao YH, Zhang BX, Yang CH, Zhang X (2005) Isolation and characterization of a chlorpyrifos and 3, 5, 6- trichloro-2-pyridinol degrading bacterium. FEMS Microbiol Lett 251:67–73PubMedCrossRefGoogle Scholar
  147. Yin L, Li X, Liu Y, Zhang D, Zhang S, Luo X (2012) Biodegradation of cypermethrin by rhodopseudomonas palustris GJ-22 isolated from activated sludge. Fresenius Environ Bull A 21(2):397–405Google Scholar
  148. Yuanfan H, Jin Z, Qing H, Qian W, Jiandong J, Shunpeng L (2010) Characterization of a fenpropathrin-degrading strain and construction of a genetically engineered microorganism for simultaneous degradation of methyl parathion and fenpropathrin. J Environ Manag 91(11):2295–2300CrossRefGoogle Scholar
  149. Yu-Suo L, Yi-Gang X, Li-Li S et al (2003) Study on biodegradation and removal of pesticide residue in soil and plant system. Nongye Huanjing Kexue Xuebao 22(2):221–223Google Scholar
  150. Zacharia JT, Margarita S (2011) Identity physical and chemical properties of pesticides. Pestic Mod World 8:978–953Google Scholar
  151. Zeinat K, Nashwa AH, Ibrahim M (2008) Biodegradation and detoxification of malathion by of bacillus thuringiensis MOS-5. Aust J Basic Appl Sci 2(3):724–732Google Scholar
  152. Zhang D, Xinqiu T, Xiangwen L (2005) Isolation of photosynthetic bacteria HP-1 with degradation of organicphosphorus insecticides and studies on its biodegradation ability and capacity of increasing growth. Shengming Kexue Yanjiu 9(3):247–253Google Scholar
  153. Zhang X, Wu W, Zhang Y et al (2007) Screening of efficient hydrocarbon-degrading strains and study on influence factors of degradation of refinery oily sludge. Ind Eng Chem Res 46(26):8910–8917CrossRefGoogle Scholar
  154. Zhang J, Sun Z, Li Y, Peng X, Li W, Yan Y (2009) Biodegradation of p-nitrophenol by Rhodococcus sp. CN6 with high cell surface hydrophobicity. J Hazard Mater 163(2-3):723–728PubMedCrossRefGoogle Scholar
  155. Zhang H, Jiang X, Lu L, Xiao W (2015) Biodegradation of polychlorinated biphenyls (PCBs) by the novel identified cyanobacterium Anabaena PD-1. PLoS One 10(7):e0131450PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Chhattisgarh Swami Vivekananda Technical UniversityBhilaiIndia
  2. 2.ICAR-National Bureau of Agriculturally Important MicroorganismsIndian Council of Agricultural ResearchMaunath BhanjanIndia

Personalised recommendations