Advertisement

Biotechnology of Commercial Microbial Products

  • Sushma Chityala
  • Vidhyadhar Nandana
  • Dharanidaran Jayachandran
  • Ashish A. Prabhu
  • Veeranki Venkata DasuEmail author
Chapter

Abstract

Industrial biotechnology has revolutionized the conventional manufacturing of chemicals through engineering of microbes, especially in recent years largely owing to reengineering of cellular metabolism. Metabolic engineering has been widely used to overproduce indigenously synthesized metabolites in E. coli, S. cerevisiae, and other hosts. Plant secondary metabolites are low molecular weight compounds which not only help the plant in its defense mechanism but also are helpful to humans in curing a wide variety of ailments/diseases. The amount of secondary metabolite production is very less using traditional techniques, in comparison with conventional methods where they are produced in large quantities from different microbes using metabolic and cellular engineering. In this chapter, we have focused on various plant secondary metabolites produced through metabolic engineering from microbes such as E. coli and S. cerevisiae.

Keywords

Plant secondary metabolites Metabolic engineering E. coli S. cerevisiae Flavonoids 

Notes

Acknowledgment

The authors would like to acknowledge the Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati for providing facilities for successful completion of this book chapter.

References

  1. Allaw AKN, Mb N, Mh N (2016) Quantification of anti-fertility compound-Diosgenin concentration in the fenugreek seeds aqueous extract (FSA). Int Med J Malays 15:75–80Google Scholar
  2. Alper H, Miyaoku K, Stephanopoulos G (2005) Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 23:612–616PubMedCrossRefGoogle Scholar
  3. Anesiadis N, Cluett WR, Mahadevan R (2008) Dynamic metabolic engineering for increasing bioprocess productivity. Metab Eng 10:255–266PubMedCrossRefGoogle Scholar
  4. Batterman RC, De Graff AC (1947) Comparative study on the use of the purified digitalis glycosides, digoxin, digitoxin, and lanatoside C, for the management of ambulatory patients with congestive heart failure. Am Heart J 34:663–673PubMedCrossRefGoogle Scholar
  5. Becker JVW, Armstrong GO, Merwe van der MJ, Lambrechts MG, Vivier MA, Pretorius IS (2003) Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol. FEMS Yeast Res 4:79–85PubMedCrossRefGoogle Scholar
  6. Bhat WW, Lattoo SK, Rana S, Razdan S, Dhar N, Dhar RS, Vishwakarma RA (2012) Efficient plant regeneration via direct organogenesis and Agrobacterium tumefaciens-mediated genetic transformation of Picrorhiza kurroa: an endangered medicinal herb of the alpine Himalayas. Vitro Cell Dev Biol Plant 48:295–303CrossRefGoogle Scholar
  7. Blum RH, Kahlert T (1978) Maytansine: a phase I study of an ansa macrolide with antitumor activity. Cancer Treat Rep 62:435–438PubMedGoogle Scholar
  8. Bournique CP, Deysson G, Le Men J (1972) Antimitotic activity of 9 methoxy ellipticine lactate. Study on plant cells (Allium test) and on human cells cultivated in vitro. Ann Pharm Fr 30:85–92PubMedGoogle Scholar
  9. Brouillard R (1982) Chemical structure of anthocyanins. In: Markakis P (ed) Anthocyanins as food colors. Academic, New York, pp 1–40Google Scholar
  10. Canter PH, Thomas H, Ernst E (2005) Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. Trends Biotechnol 23:180–185PubMedCrossRefGoogle Scholar
  11. Chemler JA, Lock LT, Koffas MAG, Tzanakakis ES (2007) Standardized biosynthesis of flavan-3-ols with effects on pancreatic beta-cell insulin secretion. Appl Microbiol Biotechnol 77:797–807PubMedCrossRefGoogle Scholar
  12. Chemler JA, Fowler ZL, McHugh KP, Koffas MAG (2010) Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metab Eng 12:96–104PubMedCrossRefGoogle Scholar
  13. Chien S-C, Wu Y-C, Chen Z-W, Yang W-C (2015) Naturally occurring anthraquinones: chemistry and therapeutic potential in autoimmune diabetes. Evid Based Complement Alternat Med 2015:e357357CrossRefGoogle Scholar
  14. Christou P, Klee H (2004) Wiley: Handbook of plant biotechnology, 2 volume set – Paul Christou, Harry KleeGoogle Scholar
  15. Corral-Lugo A, Daddaoua A, Ortega A, Espinosa-Urgel M, Krell T (2016) Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator. Sci Signal 9:ra1–ra1PubMedCrossRefGoogle Scholar
  16. Creasey WA (1976) Biochemical effects of d-tetrandrine and thalicarpine. Biochem Pharmacol 25:1887–1891PubMedCrossRefGoogle Scholar
  17. Creaven PJ, Allen LM, Williams CP (1974) The interaction of the antineoplastic drug thalicarpine with aniline hydroxylase and microsomal cytochrome of rat liver. Xenobiotica Fate Foreign Compd Biol Syst 4:255–261CrossRefGoogle Scholar
  18. D’Archivio AA, Maggi MA (2017) Geographical identification of saffron (Crocus sativus L.) by linear discriminant analysis applied to the UV-visible spectra of aqueous extracts. Food Chem 219:408–413PubMedCrossRefGoogle Scholar
  19. Dohutia C, Bhattacharyya DR, Sharma SK, Mohapatra PK, Bhattacharjee K, Gogoi K, Gogoi P, Mahanta J, Prakash A (2015) Larvicidal activity of few select indigenous plants of North East India against disease vector mosquitoes (Diptera: Culicidae). Trop Biomed 32:17–23PubMedGoogle Scholar
  20. Dos Reis Lívero FA, Martins GG, Queiroz Telles JE, Beltrame OC, Petris Biscaia SM, Cavichiolo Franco CR, Oude Elferink RPJ, Acco A (2016) Hydroethanolic extract of Baccharis trimera ameliorates alcoholic fatty liver disease in mice. Chem Biol Interact 260:22–32CrossRefGoogle Scholar
  21. Fang K, Chen S-P, Lin C-W, Cheng W-C, Huang H-T (2016) Retraction to Ellipticine-induced apoptosis depends on Akt translocation and signaling in lung epithelial cancer cells. Lung Cancer Amst Neth 100:120CrossRefGoogle Scholar
  22. Feng L, Jin J, Zhang L-F, Yan T, Tao W-Y (2006) Analysis of the resveratrol-binding protein using phage-displayed random peptide library. Acta Biochim Biophys Sin 38:342–348PubMedCrossRefGoogle Scholar
  23. Fowler ZL, Gikandi WW, Koffas MAG (2009) Increased malonyl coenzyme A biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production. Appl Environ Microbiol 75:5831–5839PubMedPubMedCentralCrossRefGoogle Scholar
  24. Fujita Y, Hara Y, Suga C, Morimoto T (1981) Production of shikonin derivatives by cell suspension cultures of Lithospermum erythrorhizon. Plant Cell Rep 1:61–63PubMedCrossRefGoogle Scholar
  25. Galardo AKR, Póvoa MM, Sucupira IMC, Galardo CD, Santos RLCD (2015) Anopheles darlingi and Anopheles marajoara (Diptera: Culicidae) susceptibility to pyrethroids in an endemic area of the Brazilian Amazon. Rev Soc Bras Med Trop 48:765–769PubMedCrossRefGoogle Scholar
  26. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M et al (1996) Life with 6000 genes. Science 274:546–567PubMedCrossRefGoogle Scholar
  27. Gómez-Galera S, Pelacho AM, Gené A, Capell T, Christou P (2007) The genetic manipulation of medicinal and aromatic plants. Plant Cell Rep 26:1689–1715PubMedCrossRefGoogle Scholar
  28. Günel T, Kuntz M, Arda N, Ertürk S, Temizkan G (2006) Metabolic engineering for production of geranylgeranyl pyrophosphate synthase in non-carotenogenic yeast Schizosaccharomyces Pombe. Biotechnol Biotechnol Equip 20:76–82CrossRefGoogle Scholar
  29. He X-Z, Li W-S, Blount JW, Dixon RA (2008) Regioselective synthesis of plant (iso)flavone glycosides in Escherichia coli. Appl Microbiol Biotechnol 80:253–260PubMedPubMedCentralCrossRefGoogle Scholar
  30. Hilliou F, Christou P, Leech MJ (1999) Development of an efficient transformation system for Catharanthus roseus cell cultures using particle bombardment. Plant Sci 140:179–188CrossRefGoogle Scholar
  31. Honda C, Kotoda N, Wada M, Kondo S, Kobayashi S, Soejima J, Zhang Z, Tsuda T, Moriguchi T (2002) Anthocyanin biosynthetic genes are coordinately expressed during red coloration in apple skin. Plant Physiol Biochem 40:955–962CrossRefGoogle Scholar
  32. Hongratanaworakit T (2010) Stimulating effect of aromatherapy massage with jasmine oil. Nat Prod Commun 5:157–162PubMedGoogle Scholar
  33. Huang Q, Lu G, Shen H-M, Chung MCM, Ong CN (2007) Anti-cancer properties of anthraquinones from rhubarb. Med Res Rev 27:609–630PubMedCrossRefGoogle Scholar
  34. Huang Q, Lin Y, Yan Y (2013) Caffeic acid production enhancement by engineering a phenylalanine over-producing Escherichia coli strain. Biotechnol Bioeng 110:3188–3196PubMedCrossRefGoogle Scholar
  35. Hwang EI, Kaneko M, Ohnishi Y, Horinouchi S (2003) Production of plant-specific flavanones by Escherichia coli containing an artificial gene cluster. Appl Environ Microbiol 69:2699–2706PubMedPubMedCentralCrossRefGoogle Scholar
  36. Idrees M, Naeem M, Aftab T, Khan MMA, Moinuddin (2010) Salicylic acid mitigates salinity stress by improving antioxidant defence system and enhances vincristine and vinblastine alkaloids production in periwinkle [Catharanthus roseus (L.) G. Don]. Acta Physiol Plant 33:987–999CrossRefGoogle Scholar
  37. Jain N, Ramawat PKG (2013) Nutraceuticals and antioxidants in prevention of diseases. In: Ramawat KG, Mérillon J-M (eds) Natural products. Springer, Berlin/Heidelberg, pp 2559–2580CrossRefGoogle Scholar
  38. Jarvis BB, Mazzola EP (1982) Macrocyclic and other novel trichothecenes: their structure, synthesis, and biological significance. Acc Chem Res 15:388–395CrossRefGoogle Scholar
  39. Jiang H, Wood KV, Morgan JA (2005) Metabolic engineering of the phenylpropanoid pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 71:2962–2969PubMedPubMedCentralCrossRefGoogle Scholar
  40. Julsing MK, Koulman A, Woerdenbag HJ, Quax WJ, Kayser O (2006) Combinatorial biosynthesis of medicinal plant secondary metabolites. Biomol Eng 23:265–279PubMedCrossRefGoogle Scholar
  41. Kamo KK, Kimoto W, Hsu A-F, Mahlberg PG, Bills DD (1982) Morphinane alkaloids in cultured tissues and redifferentiated organs of Papaver somniferum. Phytochemistry 21:219–222CrossRefGoogle Scholar
  42. Kaneko R, Kitabatake N (2001) Sweetness of sweet protein thaumatin is more thermoresistant under acid conditions than under neutral or alkaline conditions. Biosci Biotechnol Biochem 65:409–413PubMedCrossRefGoogle Scholar
  43. Katsuyama Y, Miyahisa I, Funa N, Horinouchi S (2006) One-pot synthesis of genistein from tyrosine by coincubation of genetically engineered Escherichia coli and Saccharomyces cerevisiae cells. Appl Microbiol Biotechnol 73:1143–1149PubMedCrossRefGoogle Scholar
  44. Katz A, Maor E, Leor J, Klempfner R (2016) Addition of beta-blockers to digoxin is associated with improved 1- and 10-year survival of patients hospitalized due to decompensated heart failure. Int J Cardiol 221:198–204PubMedCrossRefGoogle Scholar
  45. Khan MR, Omoloso AD, Barewai Y (2006) Antimicrobial activity of the Derris elliptica, Derris indica and Derris trifoliata extractives. Fitoterapia 77:327–330PubMedCrossRefGoogle Scholar
  46. Kim M-J, Kim B-G, Ahn J-H (2013) Biosynthesis of bioactive O-methylated flavonoids in Escherichia coli. Appl Microbiol Biotechnol 97:7195–7204PubMedCrossRefGoogle Scholar
  47. Kim SY, Lee HR, Park K, Kim B-G, Ahn J-H (2014) Metabolic engineering of Escherichia coli for the biosynthesis of flavonoid-O-glucuronides and flavonoid-O-galactoside. Appl Microbiol Biotechnol 99:2233–2242PubMedCrossRefGoogle Scholar
  48. Kolewe ME, Gaurav V, Roberts SC (2008) Pharmaceutically active natural product synthesis and supply via plant cell culture technology. Mol Pharm 5:243–256PubMedCrossRefGoogle Scholar
  49. Komoto N, Nakane T, Matsumoto S, Hashimoto S, Shirota O, Sekita S, Kuroyanagi M (2015) Acyl flavonoids, biflavones, and flavonoids from Cephalotaxus harringtonia var. nana. J Nat Med 69:479–486PubMedCrossRefGoogle Scholar
  50. Kumar RR, Prasad S (2011) Metabolic engineering of bacteria. Indian J Microbiol 51:403–409PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kupchan SM, Streelman DR, Jarvis BB, Dailey RG, Sneden AT (1977) Tumor inhibitors. 125. Isolation of potent new antileukemic trichothecenes from Baccharis megapotamica. J Organomet Chem 42:4221–4225CrossRefGoogle Scholar
  52. Kupchan SM, Dhingra OP, Ramachandran V, Kim CK (1978) Proaporphine–aporphine dimers and a bisaporphine derived from the tumor-inhibitory alkaloid thalicarpine. J Organomet Chem 43:105–108CrossRefGoogle Scholar
  53. Larsen AK, Grondard L, Couprie J, Desoize B, Comoe L, Jardillier JC, Riou JF (1993) The antileukemic alkaloid fagaronine is an inhibitor of DNA topoisomerases I and II. Biochem Pharmacol 46:1403–1412PubMedCrossRefGoogle Scholar
  54. Lee FC, Pandu Rangaiah G, Lee D-Y (2010) Modeling and optimization of a multi-product biosynthesis factory for multiple objectives. Metab Eng 12:251–267PubMedCrossRefGoogle Scholar
  55. Lee S, Mattanovich D, Villaverde A (2012) Systems metabolic engineering, industrial biotechnology and microbial cell factories. Microb Cell Factories 11:156CrossRefGoogle Scholar
  56. Lemuth K, Steuer K, Albermann C (2011) Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin. Microb Cell Factories 10:29CrossRefGoogle Scholar
  57. Leonard E, Chemler J, Lim KH, Koffas MAG (2005) Expression of a soluble flavone synthase allows the biosynthesis of phytoestrogen derivatives in Escherichia coli. Appl Microbiol Biotechnol 70:85–91PubMedCrossRefGoogle Scholar
  58. Leonard E, Yan Y, Koffas MAG (2006) Functional expression of a P450 flavonoid hydroxylase for the biosynthesis of plant-specific hydroxylated flavonols in Escherichia coli. Metab Eng 8:172–181PubMedCrossRefGoogle Scholar
  59. Leonard E, Lim K-H, Saw P-N, Koffas MAG (2007) Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. Appl Environ Microbiol 73:3877–3886PubMedPubMedCentralCrossRefGoogle Scholar
  60. Leonard E, Yan Y, Fowler ZL, Li Z, Lim C-G, Lim K-H, Koffas MAG (2008) Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids. Mol Pharm 5:257–265PubMedCrossRefGoogle Scholar
  61. Lessard P (1996) Metabolic engineering: the concept coalesces. Nat Biotechnol 14:1654–1655PubMedCrossRefGoogle Scholar
  62. Li J, Li Z, Li C, Gou J, Zhang Y (2014a) Molecular cloning and characterization of an isoflavone 7-O-glucosyltransferase from Pueraria lobata. Plant Cell Rep 33:1173–1185PubMedCrossRefGoogle Scholar
  63. Li X-R, Tian G-Q, Shen H-J, Liu J-Z (2014b) Metabolic engineering of Escherichia coli to produce zeaxanthin. J Ind Microbiol Biotechnol 42:627–636PubMedCrossRefGoogle Scholar
  64. Liu J-J, Sturrock R, Ekramoddoullah AKM (2010) The superfamily of thaumatin-like proteins: its origin, evolution, and expression towards biological function. Plant Cell Rep 29:419–436PubMedCrossRefGoogle Scholar
  65. Liu T, Wang G, Tao H, Yang Z, Wang Y, Meng Z, Cao R, Xiao Y, Wang X, Zhou J (2016a) Capsaicin mediates caspases activation and induces apoptosis through P38 and JNK MAPK pathways in human renal carcinoma. BMC Cancer 16:790PubMedPubMedCentralCrossRefGoogle Scholar
  66. Liu Y-H, X-P H, Li W, Cao X-Y, Yang H-R, Lin S-T, C-B X, Liu S-X, Li C-F (2016) Antimicrobial and antitumor activity and diversity of endophytic fungi from traditional Chinese medicinal plant Cephalotaxus hainanensis Li. Genet Mol Res 15(2). https://doi.org/10.4238/gmr.15028633
  67. Madden AH, Lindquist AW (1946) Outdoor control of adult mosquitoes with DDT or pyrethrum applied with ground equipment. Mosq News 6:7–11PubMedGoogle Scholar
  68. Malla S, Koffas MAG, Kazlauskas RJ, Kim B-G (2012) Production of 7-O-Methyl aromadendrin, a medicinally valuable flavonoid, in Escherichia coli. Appl Environ Microbiol 78:684–694PubMedPubMedCentralCrossRefGoogle Scholar
  69. Marienhagen J, Bott M (2013) Metabolic engineering of microorganisms for the synthesis of plant natural products. J Biotechnol 163:166–178PubMedCrossRefGoogle Scholar
  70. Markakis P (2012) Anthocyanins as food colors. Elsevier, New YorkGoogle Scholar
  71. Matsumura E, Nakagawa A, Tomabechi Y, Koyanagi T, Kumagai H, Yamamoto K, Katayama T, Sato F, Minami H (2016) Laboratory-scale production of (S)-reticuline, an important intermediate of benzylisoquinoline alkaloids, using a bacterial-based method. Biosci Biotechnol Biochem 0:1–7Google Scholar
  72. Mintzer J, Burns A (2000) Anticholinergic side-effects of drugs in elderly people. J R Soc Med 93:457–462PubMedPubMedCentralCrossRefGoogle Scholar
  73. Miralpeix B, Rischer H, Hakkinen S, Ritala A, Seppanen-Laakso T, Oksman-Caldentey K-M, Capell T, Christou P (2013) Metabolic engineering of plant secondary products: which way forward? Curr Pharm Des 19:5622–5639PubMedCrossRefGoogle Scholar
  74. Miyahisa I, Kaneko M, Funa N, Kawasaki H, Kojima H, Ohnishi Y, Horinouchi S (2005) Efficient production of (2S)-flavanones by Escherichia coli containing an artificial biosynthetic gene cluster. Appl Microbiol Biotechnol 68:498–504PubMedCrossRefGoogle Scholar
  75. Montgomery R, Yamauchi F (1977) Cesalin–an anti-neoplastic protein. Lloydia 40:269–274PubMedGoogle Scholar
  76. Mora-Pale M, Sanchez-Rodriguez SP, Linhardt RJ, Dordick JS, Koffas MAG (2013) Metabolic engineering and in vitro biosynthesis of phytochemicals and non-natural analogues. Plant Sci 210:10–24PubMedCrossRefGoogle Scholar
  77. Mumberg D, Müller R, Funk M (1994) Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res 22:5767–5768PubMedPubMedCentralCrossRefGoogle Scholar
  78. Mumberg D, Müller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119–122PubMedCrossRefGoogle Scholar
  79. Nakagawa A, Minami H, Kim J-S, Koyanagi T, Katayama T, Sato F, Kumagai H (2011) A bacterial platform for fermentative production of plant alkaloids. Nat Commun 2:326PubMedPubMedCentralCrossRefGoogle Scholar
  80. Nakajima J, Tanaka Y, Yamazaki M, Saito K (2001) Reaction mechanism from leucoanthocyanidin to anthocyanidin 3-glucoside, a key reaction for coloring in anthocyanin biosynthesis. J Biol Chem 276:25797–25803PubMedCrossRefGoogle Scholar
  81. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477PubMedCrossRefGoogle Scholar
  82. Nie C, Zhou J, Qin X, Shi X, Zeng Q, Liu J, Yan S, Zhang L (2016) Diosgenin induced autophagy and apoptosis in a human prostate cancer cell line. Mol Med Rep 14:4349–4359PubMedCrossRefGoogle Scholar
  83. Oswald M, Fischer M, Dirninger N, Karst F (2007) Monoterpenoid biosynthesis in Saccharomyces cerevisiae. FEMS Yeast Res 7:413–421PubMedCrossRefGoogle Scholar
  84. Ouchani F, Jeanne A, Thevenard J, Helesbeux J-J, Wahart A, Letinois I, Duval O, Martiny L, Charpentier E, Devy J (2015) Ethoxyfagaronine, a synthetic analogue of fagaronine that inhibits vascular endothelial growth factor-1, as a new anti-angiogeneic agent. Investig New Drugs 33:75–85CrossRefGoogle Scholar
  85. Pal R, Sharma MI, Krishnamurthy BS (1953) Toxicity of synthetic and natural pyrethrins incorporating synergists against mosquitoes. Indian J Malariol 6:331–341PubMedGoogle Scholar
  86. Pavlíček V, Tůma P (2017) The use of capillary electrophoresis with contactless conductivity detection for sensitive determination of stevioside and rebaudioside A in foods and beverages. Food Chem 219:193–198PubMedCrossRefGoogle Scholar
  87. Peng L, Kang S, Yin Z, Jia R, Song X, Li L, Li Z, Zou Y, Liang X, Li L et al (2015) Antibacterial activity and mechanism of berberine against Streptococcus agalactiae. Int J Clin Exp Pathol 8:5217–5223PubMedPubMedCentralGoogle Scholar
  88. Petersen M, Simmonds MSJ (2003) Rosmarinic acid. Phytochemistry 62:121–125PubMedCrossRefGoogle Scholar
  89. Pickens LB, Tang Y, Chooi Y-H (2011) Metabolic engineering for the production of natural products. Annu Rev Chem Biomol Eng 2:211–236PubMedPubMedCentralCrossRefGoogle Scholar
  90. Pompon D, Louerat B, Bronine A, Urban P (1996) Yeast expression of animal and plant P450s in optimized redox environments. In: E.F.J, Waterman MR (eds) Methods in Enzymology. Academic, New York, pp 51–64Google Scholar
  91. Rajan A, Bagai U (2013) Antimalarial potential of China 30 and Chelidonium 30 in combination therapy against lethal rodent malaria parasite: Plasmodium berghei. J Complement Integrative Med 10:89–96. https://doi.org/10.1515/jcim-2012-0016
  92. Rajput H (2014) Effects of Atropa belladonna as an anti-cholinergic. Nat Prod Chem Res 1:104. https://doi.org/10.4172/2329-6836.1000104
  93. Ralston L, Subramanian S, Matsuno M, Yu O (2005) Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soybean type I and type II chalcone isomerases. Plant Physiol 137:1375–1388PubMedPubMedCentralCrossRefGoogle Scholar
  94. Rao KV (1993) Taxol and related taxanes. I. Taxanes of Taxus brevifolia bark. Pharm Res 10:521–524PubMedCrossRefGoogle Scholar
  95. Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153PubMedCrossRefGoogle Scholar
  96. Rath CC, Devi S, Dash SK, Mishra RK (2008) Antibacterial potential assessment of jasmine essential oil against e. Coli. Indian. J Pharm Sci 70:238–241Google Scholar
  97. Rischer H, Hakkinen S, Ritala A, Seppanen-Laakso T, Miralpeix B, Capell T, Christou P, Oksman-Caldentey K-M (2013) Plant cells as pharmaceutical factories. Curr Pharm Des 19:5640–5660PubMedCrossRefGoogle Scholar
  98. Rizza P, Pellegrino M, Caruso A, Iacopetta D, Sinicropi MS, Rault S, Lancelot JC, El-Kashef H, Lesnard A, Rochais C et al (2016) 3-(Dipropylamino)-5-hydroxybenzofuro[2,3-f]quinazolin-1(2H)-one (DPA-HBFQ-1) plays an inhibitory role on breast cancer cell growth and progression. Eur J Med Chem 107:275–287PubMedCrossRefGoogle Scholar
  99. Ro D-K, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943PubMedCrossRefGoogle Scholar
  100. Ro D-K, Ouellet M, Paradise EM, Burd H, Eng D, Paddon CJ, Newman JD, Keasling JD (2008) Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid. BMC Biotechnol 8:83PubMedPubMedCentralCrossRefGoogle Scholar
  101. Rodrigues JL, Araújo RG, Prather KLJ, Kluskens LD, Rodrigues LR (2015) Heterologous production of caffeic acid from tyrosine in Escherichia coli. Enzym Microb Technol 71:36–44CrossRefGoogle Scholar
  102. Rojas JJ, Ochoa VJ, Ocampo SA, Muñoz JF (2006) Screening for antimicrobial activity of ten medicinal plants used in Colombian folkloric medicine: a possible alternative in the treatment of non-nosocomial infections. BMC Complement Altern Med 6:2PubMedPubMedCentralCrossRefGoogle Scholar
  103. Sae-Yun A, Ovatlarnporn C, Itharat A, Wiwattanapatapee R (2006) Extraction of rotenone from Derris elliptica and Derris malaccensis by pressurized liquid extraction compared with maceration. J Chromatogr A 1125:172–176PubMedCrossRefGoogle Scholar
  104. Santos CNS, Koffas M, Stephanopoulos G (2011) Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab Eng 13:392–400PubMedCrossRefGoogle Scholar
  105. SchÃfer H, Wink M (2009) Medicinally important secondary metabolites in recombinant microorganisms or plants: progress in alkaloid biosynthesis. Biotechnol J 4:1684–1703PubMedCrossRefGoogle Scholar
  106. Schlittler E, Macphillamy HB, Dorfman L, Furlenmeier A, Huebner CF, Lucas R, Mueller JM, Schwyzer R, St. Andre AF (1954) Chemistry of Rauwolfia alkaloids, including reserpine. Ann N Y Acad Sci 59:1–7PubMedCrossRefGoogle Scholar
  107. Shams Yazdani S, Gonzalez R (2008) Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products. Metab Eng 10:340–351PubMedCrossRefGoogle Scholar
  108. Siddiqui MS, Thodey K, Trenchard I, Smolke CD (2012) Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools. FEMS Yeast Res 12:144–170PubMedCrossRefGoogle Scholar
  109. Soni P, Siddiqui AA, Dwivedi J, Soni V (2012) Pharmacological properties of Datura stramonium L. as a potential medicinal tree: an overview. Asian Pac J Trop Biomed 2:1002–1008PubMedPubMedCentralCrossRefGoogle Scholar
  110. Stephanopoulos G (1999) Metabolic fluxes and metabolic engineering. Metab Eng 1:1–11PubMedCrossRefGoogle Scholar
  111. Summeren-Wesenhagen PV v, Marienhagen J (2015) Metabolic engineering of Escherichia coli for the synthesis of the plant polyphenol Pinosylvin. Appl Environ Microbiol 81:840–849PubMedPubMedCentralCrossRefGoogle Scholar
  112. Tarasiuk J, Tkaczyk-Gobis K, Stefañska B, Dzieduszycka M, Priebe W, Martelli S, Borowski E (1998) The role of structural factors of anthraquinone compounds and their quinone-modified analogues in NADH dehydrogenase-catalysed oxygen radical formation. Anticancer Drug Des 13:923–939PubMedGoogle Scholar
  113. Torri L, Frati A, Ninfali P, Mantegna S, Cravotto G, Morini G (2016) Comparison of reduced sugar high quality chocolates sweetened with stevioside and crude stevia “green” extract. J Sci Food Agric 97:2346–2352PubMedCrossRefGoogle Scholar
  114. Ulubelen A, McCaughey WF, Cole JR (1967) Proteinaceous antitumor substances from plants Caesalpinia gilliesii (Leguminosae). J Pharm Sci 56:914–916PubMedCrossRefGoogle Scholar
  115. Vavrecková C, Ulrichová J, Hajdúch M, Grambal F, Weigl E, Simánek V (1994) Effect of quaternary benzo[c]phenanthridine alkaloids sanguinarine, chelerythrine and fagaronine on some mammalian cells. Acta Univ Palacki Olomuc Fac Med 138:7–10PubMedGoogle Scholar
  116. Venkatachalam K, Gunasekaran S, Namasivayam N (2016) Biochemical and molecular mechanisms underlying the chemopreventive efficacy of rosmarinic acid in a rat colon cancer. Eur J Pharmacol 791:37–50PubMedCrossRefGoogle Scholar
  117. Walton NJ, Mayer MJ, Narbad A (2003) Vanillin. Phytochemistry 63:505–515PubMedCrossRefGoogle Scholar
  118. Wang Y, Chen S, Yu O (2011a) Metabolic engineering of flavonoids in plants and microorganisms. Appl Microbiol Biotechnol 91:949PubMedCrossRefGoogle Scholar
  119. Wang Y, Halls C, Zhang J, Matsuno M, Zhang Y, Yu O (2011b) Stepwise increase of resveratrol biosynthesis in yeast Saccharomyces cerevisiae by metabolic engineering. Metab Eng 13:455–463PubMedCrossRefGoogle Scholar
  120. Wang K, Pang S, Mu X, Qi S, Li D, Cui F, Wang C (2015a) Biological response of earthworm, Eisenia fetida, to five neonicotinoid insecticides. Chemosphere 132:120–126PubMedCrossRefGoogle Scholar
  121. Wang S, Zhang S, Xiao A, Rasmussen M, Skidmore C, Zhan J (2015b) Metabolic engineering of Escherichia coli for the biosynthesis of various phenylpropanoid derivatives. Metab Eng 29:153–159PubMedCrossRefGoogle Scholar
  122. Wang F, Zhao J, Liu D, Zhao T, Lu Z, Zhu L, Cao L, Yang J, Jin J, Cai Y (2016a) Capsaicin reactivates hMOF in gastric cancer cells and induces cell growth inhibition. Cancer Biol Ther 17:1117–1125PubMedPubMedCentralCrossRefGoogle Scholar
  123. Wang J, Guleria S, Koffas MA, Yan Y (2016b) Microbial production of value-added nutraceuticals. Curr Opin Biotechnol 37:97–104PubMedCrossRefGoogle Scholar
  124. Watts KT, Lee PC, Schmidt-Dannert C (2004) Exploring recombinant flavonoid biosynthesis in metabolically engineered Escherichia coli. Chem Bio Chem 5:500–507PubMedCrossRefGoogle Scholar
  125. Weaver BA (2014) How Taxol/paclitaxel kills cancer cells. Mol Biol Cell 25:2677–2681PubMedPubMedCentralCrossRefGoogle Scholar
  126. Widdison WC, Wilhelm SD, Cavanagh EE, Whiteman KR, Leece BA, Kovtun Y, Goldmacher VS, Xie H, Steeves RM, Lutz RJ et al (2006) Semisynthetic maytansine analogues for the targeted treatment of cancer. J Med Chem 49:4392–4408PubMedCrossRefGoogle Scholar
  127. Wilkins RW, Judson WE, Stone RW, Hollander W, Huckabee WE, Friedman IH (1954) Reserpine in the treatment of hypertension; a note on the relative dosage and effects. N Engl J Med 250:477–478PubMedCrossRefGoogle Scholar
  128. Williams DH, Stone MJ, Hauck PR, Rahman SK (1989) Why are secondary metabolites (natural products) biosynthesized? J Nat Prod 52:1189–1208PubMedCrossRefGoogle Scholar
  129. Wilson SA, Roberts SC (2012) Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant Biotechnol J 10:249–268PubMedCrossRefGoogle Scholar
  130. Wu J, Du G, Zhou J, Chen J (2013a) Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy. Metab Eng 16:48–55PubMedCrossRefGoogle Scholar
  131. Wu J, Liu P, Fan Y, Bao H, Du G, Zhou J, Chen J (2013b) Multivariate modular metabolic engineering of Escherichia coli to produce resveratrol from l-tyrosine. J Biotechnol 167:404–411PubMedCrossRefGoogle Scholar
  132. Wu J, Zhou T, Du G, Zhou J, Chen J (2014) Modular optimization of heterologous pathways for de novo synthesis of (2S)-naringenin in Escherichia coli. PLoS One 9:e101492PubMedPubMedCentralCrossRefGoogle Scholar
  133. Yadav VG, De Mey M, Giaw Lim C, Kumaran Ajikumar P, Stephanopoulos G (2012) The future of metabolic engineering and synthetic biology: towards a systematic practice. Metab Eng 14:233–241PubMedPubMedCentralCrossRefGoogle Scholar
  134. Yan Y, Chemler J, Huang L, Martens S, Koffas MAG (2005a) Metabolic engineering of anthocyanin biosynthesis in Escherichia coli. Appl Environ Microbiol 71:3617–3623PubMedPubMedCentralCrossRefGoogle Scholar
  135. Yan Y, Kohli A, Koffas MAG (2005b) Biosynthesis of natural flavanones in Saccharomyces cerevisiae. Appl Environ Microbiol 71:5610–5613PubMedPubMedCentralCrossRefGoogle Scholar
  136. Yang Y-T, Bennett GN, San K-Y (1998) Genetic and metabolic engineering. Electron J Biotechnol 1:20–21CrossRefGoogle Scholar
  137. Yen G-C, Duh P-D, Chuang D-Y (2000) Antioxidant activity of anthraquinones and anthrone. Food Chem 70:437–441CrossRefGoogle Scholar
  138. Zha W, Rubin-Pitel SB, Shao Z, Zhao H (2009) Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering. Metab Eng 11:192–198PubMedCrossRefGoogle Scholar
  139. Zhang Y, Li S-Z, Li J, Pan X, Cahoon RE, Jaworski JG, Wang X, Jez JM, Chen F, Yu O (2006) Using unnatural protein fusions to engineer resveratrol biosynthesis in yeast and mammalian cells. J Am Chem Soc 128:13030–13031PubMedCrossRefGoogle Scholar
  140. Zhao J, Li Q, Sun T, Zhu X, Xu H, Tang J, Zhang X, Ma Y (2013) Engineering central metabolic modules of Escherichia coli for improving β-carotene production. Metab Eng 17:42–50PubMedCrossRefGoogle Scholar
  141. Zhao S, Jones JA, Lachance DM, Bhan N, Khalidi O, Venkataraman S, Wang Z, Koffas MAG (2015) Improvement of catechin production in Escherichia coli through combinatorial metabolic engineering. Metab Eng 28:43–53PubMedCrossRefGoogle Scholar
  142. Zhu S, Wu J, Du G, Zhou J, Chen J (2014) Efficient synthesis of eriodictyol from l-tyrosine in Escherichia coli. Appl Environ Microbiol 80:3072–3080PubMedPubMedCentralCrossRefGoogle Scholar
  143. Zhuang X, Chappell J (2015) Building terpene production platforms in yeast. Biotechnol Bioeng 112:1854–1864PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Sushma Chityala
    • 1
  • Vidhyadhar Nandana
    • 1
    • 2
  • Dharanidaran Jayachandran
    • 1
  • Ashish A. Prabhu
    • 1
  • Veeranki Venkata Dasu
    • 1
    Email author
  1. 1.Biochemical Engineering Laboratory, Department of Biosciences and BioengineeringIndian Institute of Technology (IIT) GuwahatiGuwahatiIndia
  2. 2.Institute of Chemistry and Biochemistry, Freie UniversitatBerlinGermany

Personalised recommendations