Advertisement

Bacterial Rhizoremediation of Petroleum Hydrocarbons (PHC)

  • Jai GodhejaEmail author
  • S. K. Shekhar
  • D. R. Modi
Chapter

Abstract

Crude oil-based products majorly diesel and petrol are one of the major sources of energy today, and their transport across the world frequently results in spillage, contaminating the soil and water. So, it has become a necessity now to go for in situ technologies that can efficiently remediate persistent contaminants from soil in a cost-effective and environmentally friendly method. Currently the chapter gives an idea about rhizoremediation, which is slowly becoming a very promising technique to detoxify the pollutants. Moreover to this the other aspects of rhizoremediation like root exudates and microbial abundance in rhizosphere, effects of weather, time, irrigation, and oxygen requirement on rhizoremediation and finally looking into some soil amendment techniques to improve the process are also discussed.

Keywords

Petroleum hydrocarbons PHC Rhizoremediation Rhizosphere Exudates 

References

  1. Achuba FI (2006) The effect of sub lethal concentrations of crude oil on the growth and metabolism of Cowpea (Vigna unguiculata) seedlings. Environmentalist 26:17–20CrossRefGoogle Scholar
  2. Adam G, Duncan HJ (2002) Influence of diesel fuel on seed germination. Environ Pollut 120:363–370PubMedCrossRefGoogle Scholar
  3. Adenipekun CO, Oyetunji OJ, Kassim LS (2008) Effect of spent engine oil on the growth parameters and chlorophyll content of Corchorus olitorius Linn. Environmentalist 28:446–450CrossRefGoogle Scholar
  4. Adenipekun CO, Oyetunji OJ, Kassim LQ (2009) Screening of Abelmoschus esculentus L. moench for tolerance to spent engine oil. J Appl Biosci 20:1131–1137Google Scholar
  5. Agamuthu P, Abioye OP, Aziz AA (2010) Phytoremediation of soil contaminated with used lubricating oil using Jatropha curcas. J Hazard Mater 179:891–894PubMedCrossRefGoogle Scholar
  6. Aitchison EW, Kelley SL, Alvarez PJJ, Schnoor JL (2000) Phytoremediation of 1, 4-dioxane by hybrid poplar trees. Water Environ Res 72(3):313–321CrossRefGoogle Scholar
  7. Akaninwor JO, Ayeleso AO, Monoga CC (2007) Effect of different concentrations of crude oil (Bonny Light) on major food reserves in guinea corn during germination and growth. Sci Res Essays 2(4):127–131Google Scholar
  8. Andrews R, Parks T, Spence K (1980) Some effects of Douglas fir terpenes on certain microorganisms. Appl Environ Microbiol 40:301–304PubMedPubMedCentralGoogle Scholar
  9. Aprill W, Sims RC (1990) Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbons treatment in soil. Chemosphere 20:253–265CrossRefGoogle Scholar
  10. Ataga AE, Adedokun OM (2007) Effects of amendments and bioaugmentation of soil polluted with crude oil, automotive gasoline oil, and spent engine oil on the growth of cowpea (Vigna ungiculata L. Walp). Sci Res Essays 2(5):147–149Google Scholar
  11. Atlas RM, Bartha R (1998) Microbial ecology fundamentals and application, 3rd edn. Benjamin/Cummings Publishing Company, LondonGoogle Scholar
  12. Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681PubMedCrossRefGoogle Scholar
  13. Badri DV, Chaparro JM, Manter DK, Martinoia E, Vivanco JM (2012) Influence of ATP-binding cassette transporters in root exudation of phytoalexins, signals, and in disease resistance. Front Plant Sci 3:149PubMedPubMedCentralCrossRefGoogle Scholar
  14. Badri DV, Chaparro JM, Zhang R, Shen Q, Vivanco JM (2013) Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J Biol Chem 288:4502–4512PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266PubMedCrossRefGoogle Scholar
  16. Bais HP, Broeckling CD, Vivanco JM (2008) Root exudates modulate plant microbe interactions in the rhizosphere. In: Karlovsky P (ed) Secondary metabolites in soil ecology, vol 14. Springer, Berlin, pp 241–252CrossRefGoogle Scholar
  17. Balba MT, Al-Awadhi N, Al-Daher R (1998) Bioremediation of oil contaminated soil: microbiological methods for feasibility assessment and field evaluation. J Microbiol Methods 32:155–164CrossRefGoogle Scholar
  18. Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nature Biotech 22:583–588CrossRefGoogle Scholar
  19. Barac T, Weyens N, Oeyen L, Taghavi S, Van der Lelie D, Dubin D, Spliet M, Vangronsveld J (2009) Field note: hydraulic containment of a BTEX plume using poplar trees. Int J Phytoremed 11(5):416–424CrossRefGoogle Scholar
  20. Battey NH, Blackbourn HD (1993) The control of exocitosis in plant cells. New Phytol 125:307–308CrossRefGoogle Scholar
  21. Bennett LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits EA (2003) Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J Environ Qual 32:432–440PubMedCrossRefGoogle Scholar
  22. Berendsen RL, Pieterse CM, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486PubMedCrossRefGoogle Scholar
  23. Bertin C, Yang X, Weston L (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83CrossRefGoogle Scholar
  24. Bulgarelli D, Rott M, Schlaeppi K (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95PubMedCrossRefGoogle Scholar
  25. Calder J, Lader J (1976) Effect of dissolved aromatic hydrocarbons on the growth of marine bacteria in batch cultures. Appl Environ Microbiol 32:95–101PubMedPubMedCentralGoogle Scholar
  26. Chaineau CH, Morel JL, Oudot J (2000) Biodegradation of fuel oil hydrocarbons in the rhizosphere of maize. J Environ Qual 29:569–578CrossRefGoogle Scholar
  27. Chupakhina GN, Maslennikov PV (2004) Plant adaptation to oil stress. Russ J Ecol 35:290–295CrossRefGoogle Scholar
  28. Collins CD (2007) Implementing phytoremediation of petroleum hydrocarbons. Methods Biotechnol 23:99CrossRefGoogle Scholar
  29. Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. App Environ Microbiolo 71:4951–4959CrossRefGoogle Scholar
  30. Compant S, Clement C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678CrossRefGoogle Scholar
  31. Dariush MT, Shahriari MH, Gholamreza SF, Mahdie A, Faeze K (2007) Study of growth and germination of Medicago sativa (Alfalfa) in light crude oil-contaminated soil. Res J Agric Biol Sci 3(1):46–51Google Scholar
  32. DeAngelis KM, Brodie EL, DeSantis TZ, Andersen GL, Lindow SE, Firestone MK (2009) Selective progressive response of soil microbial community to wild oat roots. ISME J 3:168–178PubMedCrossRefGoogle Scholar
  33. Diab E (2008) Phytoremediation of oil contaminated desert soil using the rhizosphere effects of some plants. Res J Agric Biol Sci 4:604–610Google Scholar
  34. Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847PubMedCrossRefGoogle Scholar
  35. Ebuehi OAT, Abibo IB, Shekwolo PD, Sigismund KI, Adoki A, Okoro IC (2005) Remediation of crude oil contaminated soil by enhanced natural attenuation technique. J Appl Sci Environ 1:103–106Google Scholar
  36. Escalante EE, Gallegos MME, Favela TE, Gutierrez RM (2005) Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. inoculated with a microbial consortium in a model system. Chemosphere 59:405–413CrossRefGoogle Scholar
  37. Euliss K, Ho CH, Schwab AP, Rock S, Banks MK (2008) Greenhouse and field assessment of phytoremediation for petroleum contaminants in a riparian zone. Bioresour Technol 99:1961–1971PubMedCrossRefGoogle Scholar
  38. Francova K, Sura M, Macek T, Szekeres M, Bancos S, Demnerova K (2003) Preparation of plants containing bacterial enzyme for the degradation of polychlorinated biphenyls. Fresenius Environ Bull 12:309–313Google Scholar
  39. Frick C, Farrell R, Germida J (1999) Assessment of phytoremediation as an in-situ technique for cleaning oil-contaminated sites. Petroleum Technology Alliance of Canada (PTAC), CalgaryGoogle Scholar
  40. Gallego JL, Lpredo RJ, Llamas JF, Vazquez F, Sanchez J (2001) Bioremediation of diesel-contaminated soils: evaluation of potential in situ techniques by study of bacterial degradation. Biodegradation 12:325–335PubMedCrossRefGoogle Scholar
  41. Gallegos-Martínez M, Gomez Santos A, Gonzalez Cruz L, Montes de Oca Garcia MA, Yanez Trujillo L, Zermeno Eguia LA, Gutierrez-Rojas M (2000) Diagnostic and resulting approaches to restore petroleum contaminated soil in a Mexican tropical swamp. Water Sci Technol 42:377–384Google Scholar
  42. Gao Y, Ren L, Ling W, Kang F, Zhu X, Sun B (2010) Effects of low molecular weight organic acids on sorption-desorption of phenanthrene in soils. Soil Sci Soc Am J 74:51–59CrossRefGoogle Scholar
  43. Gao Y, Yang Y, Ling W, Kong H, Zhu X (2011) Gradient distribution of root exudates and polycyclic aromatic hydrocarbons in rhizosphere soil. Soil Sci Soc Am J 75:1694–1703CrossRefGoogle Scholar
  44. Garg P (2012) Energy scenario and vision 2020 in India. J Sustainable Energy Environ 3:7–17Google Scholar
  45. Gill C, Ratledge C (1972) Toxicity of n-alkanes, n-alk-l-enes, n-alkan-1-o1s and n-alkyl -l-bromide towards yeasts. J Gen Microbiol 72:165–172CrossRefGoogle Scholar
  46. Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393PubMedCrossRefGoogle Scholar
  47. Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7PubMedCrossRefGoogle Scholar
  48. Gransee A, Wittenmayer L (2000) Qualitative and quantitative analysis of water-soluble root exudates in relation to plant species and development. J Plant Nutr Soil Sci 163:381–385CrossRefGoogle Scholar
  49. Grimmer G, Brune H, Dettbarn G, Jacob J, Misfeld J, Mohr U, Naujack KW, Timm J, Wenzel HR (1991) Relevance of polycyclic aromatic hydrocarbons as environmental carcinogens. Fresenius J Anal Chem 339:792–795CrossRefGoogle Scholar
  50. Gunther T, Dornberger U, Fritsche W (1996) Effects of ryegrass on biodegradation of hydrocarbons. Chemosphere 33:203–215PubMedCrossRefGoogle Scholar
  51. Haichar FZ, Santaella C, Heulin T, Achouak W (2014) Root exudates mediated interactions belowground. Soil Biol Biochem 77:69–80CrossRefGoogle Scholar
  52. Haldar S, Sengupta S (2015) Plant-microbe cross-talk in the rhizosphere: insight and biotechnological potential. Open Microbiol J 9:1–7PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hejl AM, Koster KL (2004) The allelochemical sorgoleone inhibits root H + -ATPase and water uptake. J Chem Ecol 30:2181–2191CrossRefGoogle Scholar
  54. Ho CH, Banks MK (2006) Degradation of polycyclic aromatic hydrocarbons in the rhizosphere of Festuca arundinacea and associated microbial community changes. Biorem J 10(3):93–104CrossRefGoogle Scholar
  55. Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004a) A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut 130:465–476PubMedCrossRefGoogle Scholar
  56. Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004b) Responses of three grass species to creosote during phytoremediation. Environ Pollut 130:453–463PubMedCrossRefGoogle Scholar
  57. Huang XD, El-Alawi Y, Gurska J, Glick BR, Greenberg BM (2005) A multiprocess phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem J 81:139–147CrossRefGoogle Scholar
  58. Huang XF, Chaparro JM, Reardon KF, Zhang RF, Shen QR, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92:267–275CrossRefGoogle Scholar
  59. Hutchinson S, Schwab A, Banks M (2003) Biodegradation of petroleum hydrocarbons in the rhizosphere. In: Phytoremediation: transformation and control of contaminants Ch 11. Wiley, Hoboken, pp 355–386CrossRefGoogle Scholar
  60. Hutsch BW, Augustin J, Merbach W (2002) Plant rhizodeposition—an important source for carbon turnover in soils. J Plant Nutr Soil Sci 165:397–407CrossRefGoogle Scholar
  61. Huxtable CHA, Sawicki AJ Streat J 1997 Rehabilitation of open-cut coal mines using native grasses, final report to the Australian Coal Association Research Project (ACARP), ACARP Report No. C3054. AMIRA. MelbourneGoogle Scholar
  62. Inceoglu O, Abu Al-Soud W, Salles JF, Semenov AV, Van Elsas JD (2011) Comparative analysis of bacterial communities in a potato field as determined by pyrosequencing. PLoS ONE 6. https://doi.org/10.1371/journal.pone. 0023321
  63. Indian Petroleum & Natural Gas Statistics (2015–2016) Ministry of petroleum and natural gas. www.indiaenvironmentportal.org.inGoogle Scholar
  64. Issoufi I, Rhykerd RL, Smiciklas KD (2006) Seedling growth of agronomic crops in crude oil contaminated soil. J Agron Crop Sci 192:310–317CrossRefGoogle Scholar
  65. Jing W, Zhongzhi Z, Youming S, Wei H, Feng H, Hongguang S (2008) Phytoremediation of petroleum polluted soil. J Petrol Sci 5:167–171CrossRefGoogle Scholar
  66. Kaimi E, Mukaidani T, Miyoshi S, Tamaki M (2007) Screening of twelve plant species for phytoremediation of petroleum hydrocarbon contaminated soil. Plant Prod Sci 10(2):211–218CrossRefGoogle Scholar
  67. Kang BG, Kim WT, Yun HS, Chang SC (2010) Use of plant growth promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4:179–183CrossRefGoogle Scholar
  68. Kawahigashi H (2009) Transgenic plants for phytoremediation of herbicides. Curr Opin Biotechnol 20:225–230PubMedCrossRefGoogle Scholar
  69. Koo SY, Hong SH, Ryu HW, Cho KS (2010) Plant growth-promoting trait of rhizobacteria isolated from soil contaminated with petroleum and heavy metals. J Microbiol Biotechnol 20:587–593PubMedGoogle Scholar
  70. Kuiper I, Lagendijk E, Bloemberg G, Lugtenberg BJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Interact 17:6–15CrossRefGoogle Scholar
  71. LeFevre GH, Hozalski RM, Novak PJ (2013) Root exudate enhanced contaminant desorption: an abiotic contribution to the rhizosphere effect. Environ Sci Technol 47:11545–11553PubMedCrossRefGoogle Scholar
  72. Leigh MB, Fletcher JS, Fu XO, Schmitz FJ (2002) Root turnover: an important source of microbial substrates in rhizosphere remediation of recalcitrant contaminants. Environ Sci Technol 36:1579–1583PubMedCrossRefGoogle Scholar
  73. Ling W, Ren L, Gao Y, Zhu X, Sun B (2009) Impact of low-molecular-weight organic acids on the availability of phenanthrene and pyrene in soil. Soil Biol Biochem 41:2187–2195CrossRefGoogle Scholar
  74. Ling W, Sun R, Gao X, Xu R, Li H (2015) Low-molecular-weight organic acids enhance desorption of polycyclic aromatic hydrocarbons from soil. Eur J Soil Sci 66:339–347CrossRefGoogle Scholar
  75. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556PubMedCrossRefGoogle Scholar
  76. Lynch JM (1990) The rhizosphere. In: Experimental microbial ecology. Blackwell Scientific Publications, Oxford, pp 395–411Google Scholar
  77. Marschner P, Crowley D, Rengel Z (2011) Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis model and research methods. Soil Biol Biochem 43:883–894CrossRefGoogle Scholar
  78. Martin BC, George SJ, Price CA, Ryan MH, Tibbett M (2014) The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: current knowledge and future directions. Sci Total Environ 472:642–653PubMedCrossRefGoogle Scholar
  79. Mastretta C, Barac T, Vangronsveld J, Newman L, Taghavi S, Van Der Lelie D (2006) Endophytic bacteria and their potential application to improve the phytoremediation of contaminated environments. Biotechnol Genet Eng Rev 23:175–207PubMedCrossRefGoogle Scholar
  80. Mendes R, Kruijt M, de Bruijn I (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100PubMedCrossRefGoogle Scholar
  81. Miya RK, Firestone MK (2001) Enhanced phenanthrene biodegradation in soil by slender oat root exudates and root debris. J Environ Qual 30:1911–1918PubMedCrossRefGoogle Scholar
  82. Muratova A, Hubner TH, Narula N, Wand H, Turkovskaya O, Kuschk P, Jahn R, Merbach W (2003) Rhizosphere microflora of plants used for the phytoremediation of bitumen contaminated soil. Microbiol Res 158:151–161PubMedCrossRefGoogle Scholar
  83. Muratova AY, Dmitrieva T, Panchenko L, Turkovskaya O (2008) Phytoremediation of oil-sludge contaminated soil. Int J Phytoremed 10(6):486–502CrossRefGoogle Scholar
  84. Neal AL, Ahmad S, Gordon-Weeks R, Ton J (2012) Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS One 7:35498CrossRefGoogle Scholar
  85. Nedunuri K, Govindaraju R, Banks M, Schwab A, Chen Z (2000) Evaluation of phytoremediation for field-scale degradation of total petroleum hydrocarbons. J Environ Eng 126:483CrossRefGoogle Scholar
  86. Neumann G (2007) Root exudates and nutrient cycling. In: Marschner P, Rengel Z (eds) Nutrient cycling in terrestrial ecosystems, vol 10. Springer, Berlin, pp 123–157CrossRefGoogle Scholar
  87. Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15(3):225–230PubMedCrossRefGoogle Scholar
  88. Nwaoguikpe RN (2011) The effect of crude oil spill on the ascorbic acid content of some selected vegetable species: Spinacea oleraceae, Solanum melongena and Talinum triangulare in an oil polluted soil. Pak J Nutr 10:274–281CrossRefGoogle Scholar
  89. Odjegba VJ, Sadiq AO (2002) Effects of spent engine oil on the growth parameters, chlorophyll and protein levels of Amaranthus hybridus L. Environmentalist 22:23–28CrossRefGoogle Scholar
  90. Ogbo EM (2009) Effects of diesel fuel contamination on seed germination of four crop plants – Arachis hypogaea, Vigna unguiculata, Sorghum bicolor and Zea mays. Afr J Biotechnol 8:250–253Google Scholar
  91. Ogboghodo IA, Iruaga EK, Osemwota OI, Chokor JU (2004) An assessment of the effects of crude oil pollution on soil properties, germination and growth of maize (Zea mays) using two crude oil types-Forcados light and Escravos light. Environ Monit Assess 96:143–152PubMedCrossRefGoogle Scholar
  92. Ogbonna DN, Iwegbue CMA, Sokari TG, Akoko IO (2007) Effect of bioremediation on the growth of Okro (Abelmoshus esculetus) in the Niger Delta soils. Environmentalist 27:303–309CrossRefGoogle Scholar
  93. Okoh AI (2006) Biodegradation alternative in the cleanup of petroleum hydrocarbon pollutants. Biotechnol Mol Biol Rev 1:38–50Google Scholar
  94. Olson PE, Fletcher JS (2000) Ecological recovery of vegetation at a former industrial sludge basin and its implications to phytoremediation. Environ Sci Pollut Res 7:1–10CrossRefGoogle Scholar
  95. Olson P, Reardon K, Pilon SE (2003) Ecology of rhizosphere bioremediation (Chapter 10). In McCutcheon S, Schnoor J (eds) Phytoremediation: transformation and control of contaminants. Wiley, Hoboken, pp 317–353Google Scholar
  96. Omotayo AE, Shonubi OO, Towuru EG, Babalola SE, Ilori MO (2014) Rhizoremediation of hydrocarbon-contaminated soil by Paspalum vaginatum (Sw.) and its associated bacteria. Int Research J Microbiol (IRJM) 5:1–7Google Scholar
  97. Palmroth MT, Koskinen PEP, Pichtel J, Vaajasaari K, Joutti A, Tuhkanen TA, Puhakka JA (2006) Field-scale assessment of phytotreatment of soil contaminated with weathered hydrocarbons and heavy metals. J Soils Sediments 6:128–136CrossRefGoogle Scholar
  98. Parrish ZD, Banks MK, Schwab AP (2004) Effectiveness of phytoremediation as a secondary treatment for polycyclic aromatic hydrocarbons (PAHs) in composted soil. Int J Phytoremed 6(2):119–137CrossRefGoogle Scholar
  99. Parrish ZD, Banks MK, Schwab AP (2005) Effect of root death and decay on dissipation of polycyclic aromatic hydrocarbons in the rhizosphere of yellow sweet clover and tall fescue. J Environ Qual 34:207–216PubMedCrossRefGoogle Scholar
  100. Pilon SE (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39CrossRefGoogle Scholar
  101. Pires ACC, Cleary DFR, Almeida A (2012) Denaturing gradient gel electrophoresis and barcoded pyrosequencing reveal unprecedented archaeal diversity in mangrove sediment and rhizosphere samples. Appl Environ Microbiol 78:5520–5528PubMedPubMedCentralCrossRefGoogle Scholar
  102. Pradhan SP, Conrad JR, Paterek JR, Srivastava VJ (1998) Potential of phytoremediation for treatment of PAHs in soil at MGP sites. Soil Sedim Cotam 7:467–480CrossRefGoogle Scholar
  103. Radwan SS, Sorkhoh NA, El-Nemr IM (1995) Oil biodegradation around roots. Nature 376:382CrossRefGoogle Scholar
  104. Radwan SS, Narjes D, El-Nemr IM (2005) Enhancing the growth of Vicia faba plants by microbial inoculation to improve their phytoremediation potential for oily desert areas. Int J Phytoremed 7(1):19–32CrossRefGoogle Scholar
  105. Rangel AF, Rao IM, Horst WJ (2007) Spatial aluminium sensitivity of root apices of two common bean (Phaseolus vulgaris L.) genotypes with contrasting aluminum resistance. J Exp Bot 58:3895–3904PubMedCrossRefGoogle Scholar
  106. Rentz J, Chapman B, Alvarez P, Schnoor J (2004) Stimulation of hybrid poplar growth in petroleum-contaminated soils through oxygen addition and soil nutrient amendments. Int J Phytoremed 5:57–72CrossRefGoogle Scholar
  107. Robert FM, Sun WH, Toma M, Jones RK, Tang CS (2008) Interactions among buffelgrass, phenanthrene and phenanthrene-degrading bacteria in gnotobiotic microcosms. J Environ Sci Health A 43:1035–1041CrossRefGoogle Scholar
  108. Robson DB, Germida JJ, Farrell RE, Knight JD (2004) Hydrocarbon tolerance correlates with seed mass and relative growth rate. Biorem J 8(3–4):185–199CrossRefGoogle Scholar
  109. Roesch LFW, Fulthorpe RR, Riva A (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290PubMedPubMedCentralGoogle Scholar
  110. Ryan P, Delhaize E, Jones D (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Biol 52:527–560CrossRefGoogle Scholar
  111. Sathishkumar M, Binupriya A, Baik S, Yun S (2008) Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium isolated from hydrocarbon contaminated areas. Clean 36:92–96Google Scholar
  112. Sharifi M, Sadeghi Y, Akbarpour M (2007) Germination and growth of six plant species on contaminated soil with spent oil. Int J Environ Sci Technol 4(4):463–470CrossRefGoogle Scholar
  113. Shukla KP, Sharma S, Singh NK, Singh V, Tiwari K, Singh AS (2011) Nature and role of root exudates: efficacy in bioremediation. Afr J Biotechnol 10:9717–9724Google Scholar
  114. Sikkema J, Bont J, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222PubMedPubMedCentralGoogle Scholar
  115. Singer A (2006) The chemical ecology of pollutant biodegradation: bioremediation and phytoremediation from mechanistic and ecological perspectives. In: Mackova M, Dowling D, Macek T (eds) Phytoremediation, Rhizoremediation, vol 9A. Springer, Dordrecht, pp 5–21CrossRefGoogle Scholar
  116. Smith MJ, Flowers TH, Duncan HJ, Alder J (2006) Effects of polycyclic aromatic hydrocarbons on germination and subsequent growth of grasses and legumes in freshly contaminated soil and soil with aged PAHs residues. Environ Pollut 141:519–525PubMedCrossRefGoogle Scholar
  117. Snape I, Riddle MJ, Stark JS, Cole CM, King CK, Duquesne S, Gore DB (2001) Management and remediation of contaminated sites at Casey Station, Antarctica. Polar Rec 37:199–214CrossRefGoogle Scholar
  118. Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240PubMedCrossRefGoogle Scholar
  119. Stevens JL, Northcott GL, Stern GA, Tomy GT, Jones KC (2003) PAHs, PCBs, PCNs, organochlorine pesticides, synthetic musks, and polychlorinated n-alkanes in UK sewage sludge: survey results and implications. Environ Sci Technol 37:462–467PubMedCrossRefGoogle Scholar
  120. Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, Van Der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71:8500–8505PubMedPubMedCentralCrossRefGoogle Scholar
  121. Tanee F, Akonye L (2009) Effectiveness of Vigna unguiculata as a phytoremediation plant in the remediation of crude oil polluted soil for Cassava (Manihot esculenta; Crantz) cultivation. J Appl Sci Environ Manag 13:43–47Google Scholar
  122. Techer D, Laval GP, Henry S, Bennasroune A, Formanek P, Martinez CC, D'Innocenzo M, Muanda F, Dicko A, Rejsek K (2011) Contribution of Miscanthus giganteus root exudates to the biostimulation of PAH degradation: an in vitro study. Sci Total Environ 409:4489–4495PubMedCrossRefGoogle Scholar
  123. Torres-Cortes G, Millan V, Fernandez-Gonzalez AJ (2012) Bacterial community in the rhizosphere of the cactus species Mammillaria carnea during dry and rainy seasons assessed by deep sequencing. Plant Soil 357:275–288CrossRefGoogle Scholar
  124. Trofimov SY, Rozanova MS (2003) Transformation of soil properties under the impact of oil pollution. Eurasian Soil Sci 36:82–87Google Scholar
  125. U.S. Army Corps of Engineers (2003) Agriculturally based bioremediation of petroleum-contaminated soils and shallow groundwater in pacific island ecosystems. CH2M Hill.Google Scholar
  126. Uroz S, Buee M, Murat C, Frey-Klett P, Martin F (2010) Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environ Microbiol 2:281–288CrossRefGoogle Scholar
  127. Van Hamme J, Singh A, Ward O (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549CrossRefGoogle Scholar
  128. Vancura V, Hovadik A (1965) Roots exudates of plants II. Composition of roots exudates of some vegetables. Plant Soil 22:21–32CrossRefGoogle Scholar
  129. Vega-Jarquin C, Dendooven L, Magana-Plaza I, Thalasso F, Ramos-Valdivia A (2001) Biotransformation of n-hexadecane by cell suspension cultures of Cinchona robusta and Dioscorea composita. Environ Toxicol Chem 20:2670–2675PubMedCrossRefGoogle Scholar
  130. Vouillamoz J, Milke MW (2001) Effect of compost in phytoremediation of diesel-contaminated soils. Water Sci Technol 43:291–295PubMedGoogle Scholar
  131. Vwioko DE, Fashemi DS (2005) Growth response of Ricinus communis L (Castor Oil) in spent lubricating oil polluted soil. J Appl Sci Environ Manag 9(2):73–79Google Scholar
  132. Walker J, Seesman DPA, Colwell RR (1975) Effect of South Louisiana crude oil and No. 2 fuel oil on growth of heterotrophic microorganisms, including proteolytic, lipolytic, chitinolytic and cellulolytic bacteria. Environ Pollut 9:13–33CrossRefGoogle Scholar
  133. Walton BT, Anderson TA, Guthrie EA (1995) Bioremediation in the biosphere. Reply to comments. Environ Sci Technol 29:552PubMedCrossRefGoogle Scholar
  134. Weinert N, Piceno Y, Ding GC (2011) PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars: many common and few cultivar-dependent taxa. FEMS Microbiol Ecol 75:497–506PubMedCrossRefGoogle Scholar
  135. Weston LA, Ryan PR, Watt M (2012) Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. J Exp Bot 63:3445–3454PubMedCrossRefGoogle Scholar
  136. Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511PubMedCrossRefGoogle Scholar
  137. White JC, Mattina MI, Lee WY, Eitzer BD, Iannucci BW (2003) Role of organic acids in enhancing the desorption and uptake of weathered p,p′-DDE by Curbita pepo. Environ Pollut 124:71–80PubMedCrossRefGoogle Scholar
  138. White P, Wolf D, Thoma G, Reynolds C (2006) Phytoremediation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil. Water Air Soil Pollut 169:207–220CrossRefGoogle Scholar
  139. Widdowson MA, Shearer S, Andersen RG, Novak JT (2005) Remediation of polycyclic aromatic hydrocarbon compounds in groundwater using poplar trees. Environ Sci Technol 39(6):1598–1605PubMedCrossRefGoogle Scholar
  140. Wiltse CC, Rooney WL, Chen Z, Schwab AP, Banks MK (1998) Greenhouse evaluation of agronomic and crude oil phytoremediation potential among alfalfa genotypes. J Environ Qual 27:169–173CrossRefGoogle Scholar
  141. Xie XM, Liao M, Yang J, Chai JJ, Fang S, Wang RH (2012) Influence of root-exudates concentration on pyrene degradation and soil microbial characteristics in pyrene contaminated soil. Chemosphere 88:1190–1195PubMedCrossRefGoogle Scholar
  142. Xue K, Wu L, Deng Y, He Z, Van Nostrand J, Robertson PG, Schmidt TM, Zhou J (2013) Functional gene differences in soil microbial communities from conventional, low-input, and organic farmlands. Appl Environ Microbiol 79:1284–1292PubMedPubMedCentralCrossRefGoogle Scholar
  143. Yang Y, Ratte D, Smets B, Pignatello J, Grasso D (2001) Mobilization of soil organic matter by complexing agents and implications for polycyclic aromatic hydrocarbon desorption. Chemosphere 43:1013–1021PubMedCrossRefGoogle Scholar
  144. Yi H, Crowley DE (2007) Biostimulation of PAH degradation with plants containing high concentrations of linoleic acid. Environ Sci Technol 41:4382–4388PubMedCrossRefGoogle Scholar
  145. Yoshitomi KJ, Shann JR (2001) Corn (Zea mays l.) root exudates and their impact on C-14-pyrene mineralization. Soil Biol Biochem 33:1769–1776CrossRefGoogle Scholar
  146. Yousaf S, Ripka K, Reichenauer TG, Andria V, Afzal M, Sessitsch A (2010) Hydrocarbon degradation and plant colonization by selected bacterial strains isolated from Italian ryegrass and birdsfoot trefoil. J Appl Microbiol 109(4):1389–1401PubMedCrossRefGoogle Scholar
  147. Zhang Y, Maier WJ, Miller RM (1997) Effect of rhamnolipids on the dissolution, bioavailability, and biodegradation of phenanthrene. Environ Sci Technol 31:2211–2217CrossRefGoogle Scholar
  148. Zhang J, Yin R, Lin XG, Liu WW, Chen RR, Li XZ (2010) Interactive effect of biosurfactant and microorganism to enhance phytoremediation for removal of aged polycyclic aromatic hydrocarbons from contaminated soils. J Health Sci 56:257–266CrossRefGoogle Scholar
  149. Zhang N, Wang D, Liu Y, Li S, Shen Q, Zhang R (2014) Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant Soil 374:689–700CrossRefGoogle Scholar
  150. Zhao ZH, Wang LG, Jiang X, Wang F (2006) Influence of three low-molecular-weight organic acids on the release behavior of Hchs from red soil. China Environ Sci 26:324–327Google Scholar
  151. Zhu K, Chen H, Nan Z (2010) Phytoremediation of loose soil contaminated by organic compounds. NATO Sci Peace Secur:159–176Google Scholar
  152. Zhu K, Rock CO (2008) RhlA converts b-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the b-hydroxydecanoyl-b-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa. J Bacteriol 190:3147–3154Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of BiotechnologyBabasaheb Bhimrao Ambedkar UniversityLucknowIndia

Personalised recommendations