Skip to main content

Trichoderma and Its Potential Applications

  • Chapter
  • First Online:
Plant-Microbe Interactions in Agro-Ecological Perspectives

Abstract

Trichoderma are free-living green-spored ascomycetes, ubiquitous inhabitants of soil and aquatic environments present in nearly all types of tropical and temperate regions. Trichoderma species are known to maintain a parasitic or symbiotic relationship with plants and animals and are ubiquitous inhabitants of soil and aquatic environments with its diverse applications in the field of agriculture, industries, and bioremediation. It is a well-known biocontrol agent and follows various mechanisms such as competition, mycoparasitism, induced resistance, etc. The following chapter, therefore, briefs the diversity, biology, and various applications of Trichoderma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahmad JS, Baker R (1987) Competitive saprophytic ability and cellulolytic activity of rhizosphere-competent mutants of Trichodermaharzianum. Phytopathology 77:358–362

    Article  CAS  Google Scholar 

  • Amira RD, Roshanida AR, Rosli MI et al (2012) Bioconversion of empty fruit bunch (EFB) and palm oil mill effluent (POME) into compost using Trichoderma virens. Afr J Biotechnol 10(81):18775–18780

    Google Scholar 

  • Arriagada C, Aranda E, Sampedro I et al (2009) Contribution of the saprobic fungi Trametes versicolor and Trichoderma harzianum and the arbuscular mycorrhizal fungi Glomus deserticola and G. claroideum to arsenic tolerance of Eucalyptus globulus. Bioresour Technol 100(24):6250–6257

    Article  CAS  PubMed  Google Scholar 

  • Arriagada CA, Herrera MA, Borie F et al (2007) Contribution of arbuscular mycorrhizal and saprobe fungi to the aluminum resistance of Eucalyptus globulus. Water Air Soil Pollut 182:383–394

    Article  CAS  Google Scholar 

  • Bae H, Roberts DP, Lim HS et al (2011) Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Mol Plant Microbe Interact 24:336–351

    Article  CAS  PubMed  Google Scholar 

  • Bernard E, Larkin RP, Tavantis S, Erich MS, Alyokhinm AM, Sewell G, Lannan A, Gross SD (2012) Compost, rapeseed rotation, and biocontrol agents significantly impact soil microbial communities in organic and conventional potato production systems. Appl Soil Ecol 52:29–41

    Article  Google Scholar 

  • Bissett J (1992) Trichoderma atroviride. Can J Bot 70(3):639–641

    Article  Google Scholar 

  • Biswas DR, Narayanasamy G (2002) Mobilization of phos- phorus from rock phosphate through composting using crop residue. Fertil News 47(3):53–56

    CAS  Google Scholar 

  • Bochner BR, Gadzinski P, Panomitros E (2001) Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res 11:1246–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brijwani K, Vadlani PV (2011) Cellulolytic enzymes production via solid-state fermentation: effect of pretreatment methods on physicochemical characteristics of substrate. Enzym Res. https://doi.org/10.4061/2011/860134

  • Brotman Y, Kapuganti JG, Viterbo A (2010) Trichoderma. Curr Biol 20(9):390–391

    Article  Google Scholar 

  • Buchicchio A, Bianco G, Sofo A et al (2016) Biodegradation of carbamazepine and clarithromycin by Trichodermaharzianum and Pleurotus ostreatus investigated by liquid chromatography–high-resolution tandem mass spectrometry (FTICR MS-IRMPD). Science of the Total Environment: 733–739

    Google Scholar 

  • Cao L, Jiang M, Zeng Z et al (2008) Trichoderma atroviride F6 improves phytoextraction efficiency of mustard (Brassica juncea (L.) Coss. var. foliosa Bailey) in Cd, Ni contaminated soils. Chemosphere 71:1769–1773

    Article  CAS  PubMed  Google Scholar 

  • Cardoza RE, Malmierca MG, Hermosa MR et al (2011) Identification of loci and functional characterization of trichothecene biosynthesis genes in filamentous fungi of the genus Trichoderma. Appl Environ Microbiol 77:4867–4877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chahal DS, McGuire S, Pikor H et al (1982) Production of cellulase complex by Trichoderma reesei Rut-C30 on lignocellulose and its hydrolytic potential. Biomass 2:127–137

    Article  CAS  Google Scholar 

  • Chaverri P, Samuels GJ (2003) Hypocrea/Trichoderma (Ascomycota, Hypocreales, Hypocreaceae): species with green ascospores. Stud Mycol 48:1–116

    Google Scholar 

  • Chaverri P, Samuels GJ (2004) Hypocrea/Trichoderma (Ascomycota, Hypocreales, Hypocreaceae): species with green ascospores. Stud Mycol 48:1–36

    Google Scholar 

  • Chet I, Harman GE, Baker R (1981) Trichoderma hamatum: its hyphal interactions with Rhizoctonia solani and Pythium spp. Microb Ecol 7:29–38

    Article  CAS  PubMed  Google Scholar 

  • De Ceuster TJJ, Hoitink HAJ (1999) Prospects for composts and biological control agents as substitutes for methyl bromide in biological control plan disease. Compost Sci Util 7:6–15

    Article  Google Scholar 

  • De Respinis S, Vogel G, Benagli C et al (2010) MALDI-TOF MS of Trichoderma: a model system for the identification of microfungi. Mycol Prog 9:79–100

    Article  Google Scholar 

  • Delira RA, Alarcon A, Ferrera CR et al (2012) Tolerance and growth of 11 Trichoderma strains to crude oil, naphthalene, phenanthrene and benzo- α- pyrene. J Environ Manag 95:291–299

    Article  Google Scholar 

  • Druzhinina I, Kubicek CP (2004) Species concept and biodiversity in Trichoderma and Hypocrea: from aggregate species to species clusters. J Zhejiang Univer Sci 6B:100–112

    Article  Google Scholar 

  • Druzhinina IS, Kopchinskiy AG, Komon M et al (2005) An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol 42:813–828

    Article  CAS  PubMed  Google Scholar 

  • Druzhinina IS, Kopchinskiy AG, Kubicek CP (2006a) The first 100 Trichoderma species characterized by molecular data. Mycoscience 47:55–64

    Article  CAS  Google Scholar 

  • Druzhinina IS, Schmoll M, Seiboth B et al (2006b) Global carbon utilization profiles of wild-type, mutant, and transformant strains of Hypocrea jecorina. Appl Environ Microbiol 72:2126–2133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elad T, Chet J, Katan J (1980) Trichoderma harzianum a biocontrol effective against Sclerotium rolfsii and Rhizoctonia solani. Phytopatology 70:119–121

    Article  Google Scholar 

  • Elad Y, Chet I, Boyle P et al (1983) Parasitism of Trichoderma spp. on Rhizoctonia solani and Sclerotium rolfsii by scanning electron microscopy and fluorescence microscopy. Phytopathology 73:85–88

    Article  Google Scholar 

  • Elad Y, David DR, Levi T et al (1999) TrichodermaharzianumT-39- mechanisms of biocontrol of foliar pathogens. In: Lyr H, Russell PE, Dehne HW, Sisler HD (eds) Modern fungicides and antifungal compounds II. Intercept, Andover/Hants, pp 459–467

    Google Scholar 

  • Errasquin EL, Vazquez C (2003) Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere 50:137–143

    Article  Google Scholar 

  • Ezzi MI, Lynch JM (2005) Biodegradation of cyanide by Trichoderma spp. and Fusarium spp. Enzyme Microb Technol 36:849–854

    Article  CAS  Google Scholar 

  • Ferrigo D, Raiola A, Rasera R et al (2014) Trichoderma harzianum seed treatment controls Fusarium verticillioides colonization and fumonisin contamination in maize under field conditions. Crop Prot 65:51–56

    Article  Google Scholar 

  • Gal-Hemed I, Atanasova L, Komon-Zelazowska M et al (2011) Marine isolates of Trichoderma spp. as potential Halotolerant agents of biological control for arid-zone agriculture. Appl Environ Microbiol 77(15):5100–5109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gajera HP, Hirpara DG, Katakpara ZA et al (2016) Molecular evolution and phylogenetic analysis of biocontrol genes acquired from SCoT polymorphism of mycoparasitic Trichoderma koningii inhibiting phytopathogen Rhizoctonia solani Kuhn. Infect Genet Evol 45:383–392

    Article  CAS  PubMed  Google Scholar 

  • Gams W, Bissett J (1998) Morphology and identification of Trichoderma. In: Harmann GE, Kubicek CP (eds) Trichoderma and Gliocladium. Taylor and Francis, London, pp 3–34

    Google Scholar 

  • Gams W, Bissett J (2002) Morphology and identification of Trichoderma. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium: basic biology, taxonomy and genetics. Taylor & Francis Ltd, London, pp 3–31

    Google Scholar 

  • Gao KX, Liu XG, Liu YH et al (2002) Potential of Trichoderma harzianum and T .atroviride to control Botryosphaeriaberengerianaf. sp. piricola, the cause of apple ring rot. J Phytopathol 150:271–276

    Article  Google Scholar 

  • Gestel KV, Mergaert J, Swingsb J et al (2003) Bioremediation of diesel oil-contaminated soil by composting with biowaste. Environ Pollut 125:361–368

    Article  PubMed  Google Scholar 

  • Haddadin MSY, Haddadin J, Arabiyat OI et al (2009) Biological conversion of olive pomace into compost by using Trichoderma harzianum and Phanerochaete chrysosporium. Bioresour Technol 100(20):4773–4782

    Article  CAS  PubMed  Google Scholar 

  • Haran S, Schickler H, Oppenheim A et al (1996) Differential expression of Trichoderma harzianum chitinases during mycoparasitism. Phytopathology 86:980–985

    Article  CAS  Google Scholar 

  • Harman GE (2000) Myths and dogmas of biocontrol changes in perceptions derived from research on T-22. Plant Dis 84(4):377–393

    Article  Google Scholar 

  • Harman GE, Howell CR, Viterbo A et al (2004a) Trichoderma species—opportunistic avirulent plant symbionts. Nat Rev Microbiol 2(1):43–56

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Lorito M, Lynch JM (2004b) Uses of Trichoderma spp. to remediate soil and water pollution. Adv Appl Microbiol 56:313–330

    Article  CAS  PubMed  Google Scholar 

  • Hasan S (2016) Potential of Trichoderma sp. in Bioremediation: a review. J Basic Appl Eng Res 3(9):776–779. ISSN: 2350-0077

    Google Scholar 

  • Hatvani L, Manczinger L, Kredics L et al (2006) Production of Trichoderma strains with pesticide polyresistance by mutagenesis and protoplast fusion. Antonie Van Leeuwenhoek 89:387–393

    Article  PubMed  Google Scholar 

  • Hoitink HAJ, Stone AG, Han DY (1997) Suppression of plant diseases by composts. Hort Sci 32:184–187

    Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    Article  Google Scholar 

  • Ibrahim MD (2005) Delivery System of Trichoderma Inoculants for Control of Rhizoctonia Disease in Brassica rapa Ph.D thesis Universiti Putra Malaysia, Malaysia

    Google Scholar 

  • Jaklitsch WM (2009) European species of Hypocrea Part I The green-spored species. Stud Mycol 63:1–91

    Article  PubMed  PubMed Central  Google Scholar 

  • Jinantana J (1995) Evaluation of Malaysian Isolates of Trichoderma harzianum Rifai and Gliolcadium virens Miller, Giddens and Foster for the Biological Control of Sclerotium Foot Rot of Chilli Ph.D thesis Universiti Putra Malaysia, Malaysia

    Google Scholar 

  • Joshi C, Khare SK (2011) Utilization of deoiled Jatropha curcas seed cake for production of xylanase from thermophilic Scytalidium thermophilum. Bioresour Technol 102(2):1722–1726

    Article  CAS  PubMed  Google Scholar 

  • Kacprzak MJ, Rosikon K, Fijalkowski K et al(2014) The effect of Trichoderma on heavy metal mobility and uptake by Miscanthus giganteus, Salix sp., Phalaris arundinacea, and Panicum virgatum. Appl Envir Soil Sci. p 10, Article id 506142

    Google Scholar 

  • Kapulnik Y, Chet I (2000) Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite T. harzianum strain T-203. Plant Physiol Biochem 38:863–873

    Article  Google Scholar 

  • Kar S, Gauri S, Das A et al (2013) Process optimization of xylanase production using cheap solid substrate by Trichoderma reesei SAF3 and study on the alteration of behavioral properties of enzyme obtained from SSF and SmF. Bioprocess Biosyst Eng 36:57–68

    Article  CAS  PubMed  Google Scholar 

  • Kipngeno P, Losenge T, Maina N et al (2015) Efficacy of Bacillus subtilis and Trichoderma asperellum against Pythium aphanidermatum in tomatoes. Biol Control 90:92–95

    Article  Google Scholar 

  • Klein D, Eveleigh DE (2002) Ecology of Trichoderma. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium: basic biology, taxonomy and genetics. Taylor & Francis Ltd, London, pp 57–69

    Google Scholar 

  • Kopchinskiy A, Komon M, Kubicek CP et al (2005) TrichoBLAST: a multilocus database for Trichoderma and Hypocrea identifications. Mycol Res 109:658–660

    Article  PubMed  Google Scholar 

  • Kovacs K, Szakacs G, Pusztahelyi T, Pandey A (2004) Production of Chitinolytic enzymes with Trichoderma Longibrachiatum IMI 92027 in solid substrate fermentation. Appl Biochem Biotechnol 118(1–3):189–204

    Article  CAS  PubMed  Google Scholar 

  • Kubicek CP, Bissett J, Druzhinina I et al (2003) Genetic and metabolic diversity of Trichoderma: a case study on South-East Asian isolates. Fungal Genet Biol 38:310–319

    Article  CAS  PubMed  Google Scholar 

  • Kubicek CP, Komon-Zelazowska M, Druzhinina IS (2008) Fungal genus Hypocrea/Trichoderma: from barcodes to biodiversity. J Zhejiang Univ Sci B 9(10):753–763

    Article  PubMed  PubMed Central  Google Scholar 

  • Kubicek CP, Mikus M, Schuster A et al (2009) Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol Biofuels 2(1):19

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin X, Heitman J (2005) Chlamydospore formation during hyphal growth in Cryptococcus neoformans. Eukaryot Cell 4:1746–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lio JY, Wang T (2012) Solid-state fermentation of soybean and corn processing Coproducts for potential feed improvement. J Agric Food Chem 60(31):7702–7709

    Article  CAS  PubMed  Google Scholar 

  • López-Quintero CA, Atanasova L, Esperanza Franco-Molano A et al (2013) DNA barcoding survey of Trichoderma diversity in soil and litter of the Colombian lowland Amazonian rainforest reveals Trichoderma strigosellum sp. nov. and other species. Antonie Van Leeuwenhoek 104(5):657–674

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorito M, Mach RL, Sposato P et al (1996) Mycoparasitic interaction relieves binding of Cre1 carbon catabolite repressor protein to promoter sequence of ech-42 (endochitinase-encoding) gene of Trichodermaharzianum. Proc. Nat Acad Sci U S A 93:14868–14872

    Article  CAS  Google Scholar 

  • Lorito M, Woo SL, Garcia I et al (1998) Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc Nat Acad Sci U S A 95:7860–7865

    Article  CAS  Google Scholar 

  • Lynch JM, Moffat AJ (2005) Bioremediation—prospects for the future application of innovative applied biological research. Ann Appl Biol 146:217–221

    Article  Google Scholar 

  • Mbarga JB, Begoude BAD, Ambang Z et al (2014) A new oil-based formulation of Trichoderma asperellum for the biological control of cacao black pod disease caused by Phytophthora megakarya. Biol Control 77:15–22

    Article  Google Scholar 

  • Mold and bacteria consulting laboratories. http://www.moldbacteria.com/mold/trichodema.html. Accessed 16 Oct 2016

  • Mulaw TB, Kubicek CP, Druzhinina IS (2010) The Rhizosphere of Coffea Arabica in its native highland forests of Ethiopia provides a niche for a distinguished diversity of Trichoderma. Diversity 2(4):527–549

    Article  CAS  Google Scholar 

  • Nongmaithem N, Roy A, Bhattacharya PM (2016) Screening of Trichoderma isolates for their potential of biosorption of nickel and cadmium. Braz J Microbiol 47(2):305–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nampoothiri MK, Baiju TV, Sandhya C et al (2004) Process optimization for antifungal chitinase production by Trichodermaharzianum. Process Biochem 39:1583–1590

    Article  CAS  Google Scholar 

  • Ociepa E (2011) The effect of fertilization on yielding and heavy metals uptake by maize and virginia fanpetals (Sida Hermaphrodita). Arch Environ Prot 37(2):123–129

    CAS  Google Scholar 

  • Oros G, Naar Z, Cserhati T (2011) Growth response of Trichoderma species to organic solvents. Mol Inf 30:276–285

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Rodriguez-León JA et al (2001) Production of organic acids by solid-state fermentation. In: Solid-state fermentation in biotechnology -fundamentals and applications. Asia Tech Publishers, New Delhi, pp 113–126

    Google Scholar 

  • Papavizas GC (1985) Trichoderma and Gliocladium: biology, ecology, and potential for biocontrol. Annu Rev Phytopathol 23(1):23–54

    Article  Google Scholar 

  • Peitersen N (1975) Production of cellulase and protein from barley straw by Trichoderma viride. Biotechnol Bioeng 17:361–374

    Article  CAS  Google Scholar 

  • Pelcastre MI, Ibarra JRV, Navarrete AM, Rosas JC, CAG R, Sandoval OAA (2013) Bioremediation perspectives using autochthonous species of Trichoderma sp. for degradation of atrazine in agricultural soil from the Tulancingo valley, Hidalgo, Mexico. Trop Subtrop Agroecosyst 16:265–276

    CAS  Google Scholar 

  • Ranasingh N, Saturabh A, Nedunchezhiyan M (2006) Use of Trichoderma in disease management. Orissa Review:68–70

    Google Scholar 

  • Rezende MI, Barbosa AM, Vasconcelos AFD, Endo AS (2002) Xylanase production by Trichoderma harzianum rifai by solid state fermentation on sugarcane bagasse. Braz J Microbiol 33:67–72

    Article  CAS  Google Scholar 

  • Rifai MA (1969) A revision of the genus Trichoderma. Mycol Pap 116:1–56

    Google Scholar 

  • Ristaino JB, Perry KB, Lumsden RD (1991) Effect of soil solarisation and Gliocladium virens on sclerotia of Sclerotium rolfsii, soil microbioata and the incidence of southern blight in tomato. Phytopathology 81:1117–1124

    Article  Google Scholar 

  • Roco A, Perez LM (2001) In vitro biocontrol activity of Trichoderma harzianum on Alternaria Alternata in the presence of growth regulators. Electron J Biotechnol 4:1–6

    Google Scholar 

  • Rubio MB, Hermosa R, Reino JL et al (2009) The tf1 transcription factor of Trichoderma harzianum is involved in 6-pentyl-2H-pyran-2-one production and antifungal activity. Fungal Genet Biol 46:17–27

    Google Scholar 

  • Ru Z, Di W (2012) Trichoderma spp. from rhizosphere soil and their antagonism against Fusarium sambucinum. Afr J Biotechnol 11(18)

    Google Scholar 

  • Sahu A, Mandal A, Thakur J, Manna MC, Rao AS (2012) Exploring bioaccumulation efficacy of Trichoderma viride: an alternative bioremediation of cadmium and lead. Nat Acad Sci Lett 35:299–302

    Article  CAS  Google Scholar 

  • Samuels G (2004) Growth rate/colony radius http://www.isth.info/methods/method.php

  • Samuels GJ (1996) Trichoderma: a review of biology and systematics of the genus. Mycol Res 100(8):923–935

    Article  Google Scholar 

  • Samuels GJ (2006) Trichoderma: systematics, the sexual state, and ecology. Phytopathology 96:195–206

    Article  CAS  PubMed  Google Scholar 

  • Samuels GJ et al (2002a) Trichoderma. http://nt.ars-grin.gov/taxadescriptions/keys/TrichodermaIndex.cfm. Accessed on 16 Feb 2013

  • Samuels GJ et al (2002b) Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia 94:146–170

    Article  PubMed  Google Scholar 

  • Samuels GJ, Petrini O, Kuhls K et al (1998) The Hypocrea schweinitzii complex and Trichoderma sect. Longibrachiatum. Stud Mycol 41:1–54

    Google Scholar 

  • Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87(3):787–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Kumar VP, Ramesh R, Saravanan K, Deep S, Sharma M, Mahesh S, Dinesh S (2011) Biocontrol genes from Trichoderma species: a review. Afr J Biotechnol 10(86):19898–19907

    CAS  Google Scholar 

  • Sharma R, Joshi A, Dhaker RC (2012) A brief review on mechanism of Trichoderma fungus use as biological control agents. Int J Innov Bio-Sci 2(4):200–210. ISSN 2277–2367

    Google Scholar 

  • Sharma S, Arora K (2012) Role of Paecilomyces in waste management. J Solid Waste Technol Manag 38(2):73–81

    Article  Google Scholar 

  • Siddiqui Y, Meon S, Ismail MR, Ali A (2008) Trichoderma-fortified compost extracts for the control of choanephora wet rot in okra production. Crop Prot 27:385–390

    Article  Google Scholar 

  • Srivastava R, Khalid A, Singh U (2010) Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum f. sp. lycopersici for the management of tomato wilt. Biol Control 53:24–31

    Article  Google Scholar 

  • Taghizadeh A, Zabiholla N (2008) Degradability characteristics of treated and untreated barley grain using in situ technique. Am J Anim Vet Sci 3(2):53–56

    Article  CAS  Google Scholar 

  • Tang J, Liu L, Huang X et al (2010) Proteomic analysis of Trichoderma atroviride mycelia stressed by organophosphate pesticide dichlorvos. Can J Microbiol 56:121–127

    Article  CAS  PubMed  Google Scholar 

  • Tangnu SK, Blanch HW, Wilke CR (1981) Enhanced production of cellulase, hemicellulase, and b-glucosidase by Trichoderma reesei (Rut-C30). Biotechnol Bioeng 23:1837–1849

    Article  CAS  Google Scholar 

  • Toghueo RMK, Eke P, Zabalgogeazcoa I et al (2016) Biocontrol and growth enhancement potential of two endophytic Trichoderma spp. from Terminalia catappa against the causative agent of Common Bean Root Rot (Fusarium solani). Biol Control 96:8–20

    Article  Google Scholar 

  • Vacondio B, Birolli WG, Ferreira IM et al (2015) Biodegradation of pentachlorophenol by marine-derived fungus Trichodermaharzianum CBMAI 1677 isolated from ascidian Didemnum ligulum. Biocatal Agric Biotechnol 4:266–275

    Google Scholar 

  • Verma M, Brar SK, Tyagi RD, Surampalli RY, Valéro JR (2007) Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochem Eng J 37(1):1–20

    Article  Google Scholar 

  • Weltzien HC (1991) Biocontrol of foliar fungal diseases with compost extracts. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, pp 430–450. isbn:038975799

    Google Scholar 

  • Widmer TL (2014) Screening Trichoderma species for biological control activity against Phytophthora ramorum in soil. Biol Control 79:43–48

    Article  Google Scholar 

  • Xia L, Cen P (1999) Cellulase production by solid state fermentation from the xylose industry. Process Biochem 34:909–912

    Article  CAS  Google Scholar 

  • Zhang CL, Liu S, Lin F et al (2007) Trichoderma taxi sp. nov., an endophytic fungus from Chinese yew Taxus mairei. FEMS Microbiol Lett 270(1):90–96

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors are grateful to DBT and IIT Delhi for providing financial support for preparing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyawati Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jangir, M., Pathak, R., Sharma, S. (2017). Trichoderma and Its Potential Applications. In: Singh, D., Singh, H., Prabha, R. (eds) Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-10-6593-4_13

Download citation

Publish with us

Policies and ethics