Cyanobacteria: Role in Agriculture, Environmental Sustainability, Biotechnological Potential and Agroecological Impact

  • Shivam Yadav
  • Shweta Rai
  • Ruchi Rai
  • Alka Shankar
  • Shilpi Singh
  • L. C. RaiEmail author


Cyanobacteria, a group of photosynthetic prokaryotes, have drawn the attention of agricultural scientists due to their notable key features such as the presence of oxygenic photosynthesis along with nitrogen fixation, ease in genetic manipulation and excellent adaptability to various environmental vagaries. Moreover, they have been recognized as an opulent source of various bioactive compounds possessing antibacterial, antiviral, antifungal and anticancer activities. They are also contributing positively in bioremediation and sustainable development of ecosystem. Furthermore, the presence of novel genes opens new ways for generation of transgenic crops with improved productivity and nutritional values. In view of the above, the present chapter is an attempt to cast light on cyanobacterial assistance and their potential role in sustainable development of agriculture and ecosystem.


Cyanobacteria Biofertilizer Transgenics Biotechnological potential CO2 sequestration 



L C Rai thanks the DST, DAE for JC Bose National Fellowship and Raja Ramanna Fellowship, ICAR NBAIM, MAU and CSIR New Delhi for the financial support through projects and Head & Coordinator Centre of Advanced Study in Botany for the facilities. Shivam Yadav thanks the UGC for SRF. Alka Shankar and Shweta Rai thank ICAR for RA and SRF, respectively. Ruchi Rai and Shilpi Singh are thankful to the Department of Science and Technology for WOS-A fellowship.


  1. Abarzua S, Jakubowski S, Eckert S, Fuchs P (1999) Biotechnological investigation for the prevention of marine biofouling II. Blue-green algae as potential producers of biogenic agents for the growth inhibition of microfouling organisms. Bot Mar 42:459–465CrossRefGoogle Scholar
  2. Acharya C, Chandwadkar P, Apte SK (2012) Interaction of uranium with a filamentous, heterocystous, nitrogen-fixing cyanobacterium, Anabaena torulosa. Bioresour Technol 116:290–294PubMedCrossRefGoogle Scholar
  3. Agrawal C, Sen S, Yadav S, Rai S, Rai LC (2015) A novel aldo-keto reductase (AKR17A1) of Anabaena sp. PCC 7120 degrades the rice field herbicide butachlor and confers tolerance to abiotic stresses in E. coli. PLoS One 10(9):e0137744PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ahmad MH, Venkatraman GS (1973) Tolerance of Aulosira fertilissima to pesticides. Curr Sci 42:108Google Scholar
  5. Ahuja P, Gupta R, Saxena RK (1999) Zn+ biosorption by Oscillatoria anguistissima. Process Biochem 34:77–85CrossRefGoogle Scholar
  6. Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2(1):1–12PubMedPubMedCentralCrossRefGoogle Scholar
  7. Al Abboud MA, Ghany TMA, Alawlaqi MM (2013) Role of biofertilizers in agriculture: a brief review. Mycopathologia 11(2):95–101Google Scholar
  8. Al-Hasan RH, Al-Bader DA, Sorkhoh NA, Radwan SS (1998) Evidence for n-alkane consumption and oxidation by filamentous cyanobacteria from oil-contaminated coasts of the Arabian Gulf. Mar Biol 130:521–527CrossRefGoogle Scholar
  9. Al-Hasan RH, Khanafer M, Eliyas M, Radwan SS (2001) Hydrocarbon accumulation by picocyanobacteria from the Arabian Gulf. J Appl Microbiol 91(3):533–540PubMedCrossRefGoogle Scholar
  10. Arora SK (1969) The role of algae on the availability of phosphorus in paddy fields. Riso 18:135–138Google Scholar
  11. Aziz MA, Hashem MA (2003) Role of cyanobacteria in improving fertility of saline soil. Pak J Biol Sci 6(20):1751–1752CrossRefGoogle Scholar
  12. Banerjee M, Chakravarty D, Ballal A (2015) Redox-dependent chaperone/peroxidase function of 2-Cys-Prx from the cyanobacterium Anabaena PCC7120: role in oxidative stress tolerance. BMC Plant Biol 15:60PubMedPubMedCentralCrossRefGoogle Scholar
  13. Biondi N, Piccardi R, Margheri MC, Rodolfi L, Smith GD, Tredici MR (2004) Evaluation of Nostoc strain ATCC53789 as a potential source of natural pesticides. Appl Environ Microbiol 70:3313–3320PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bose P, Nagpal US, Venkataraman GS, Goyal SK (1971) Solubilization of tricalcium phosphate by blue-green algae. Curr Sci 40:165–166Google Scholar
  15. Boyer JS (1982) Plant productivity and environment. Science 218:443–448PubMedCrossRefGoogle Scholar
  16. Burja AM, Banaigs B, Abou-Mansour E, Burgess JG, Wright PC (2001) Marine cyanobacteria–a prolific source of natural products. Tetrahedron 57:9347–9377CrossRefGoogle Scholar
  17. Cameron HJ, Julian GR (1988) Utilisation of hydroxyapatite by cyanobacteria as their sole source of phosphate and calcium. Plant Soil 109:123–124CrossRefGoogle Scholar
  18. Cerniglia CE, Gibson DT, Van Baalen C (1979) Algal oxidation of aromatic hydrocarbons: formation of 1-naphthol from naphthalene by Agmenellum quadruplicatum, strain PR-6. Biochem Biophys Res Commun 88(1):50–58PubMedCrossRefGoogle Scholar
  19. Cerniglia CE, Gibson DT, Baalen CV (1980a) Oxidation of naphthalene by cyanobacteria and microalgae. J Gen Microbiol 116:495–500Google Scholar
  20. Cerniglia CE, Van Baalen C, Gibson DT (1980b) Oxidation of biphenyl by the cyanobacterium, Oscillatoria sp., strain JCM. Arch Microbiol 125(3):203–207PubMedCrossRefGoogle Scholar
  21. Chakravarty D, Banerjee M, Bihani SC, Ballal A (2016) A salt-inducible Mn-catalase (KatB) protects cyanobacterium from oxidative stress. Plant Physiol 170(2):761–773PubMedCrossRefGoogle Scholar
  22. Chamovitz D, Pecker I, Hirschberg J (1991) The molecular basis of resistance to the herbicide norflurazon. Plant Mol Biol 16(6):967–974PubMedCrossRefGoogle Scholar
  23. Chaurasia N, Mishra Y, Rai LC (2008) Cloning expression and analysis of phytochelatin synthase (pcs) gene from Anabaena sp. PCC 7120 offering multiple stress tolerance in Escherichia coli. Biochem Biophys Res Commun 376(1):225–230PubMedCrossRefGoogle Scholar
  24. Chen LM, Li KZ, Miwa T, Izui K (2004) Overexpression of a cyanobacterial phosphoenolpyruvate carboxylase with diminished sensitivity to feedback inhibition in Arabidopsis changes amino acid metabolism. Planta 219(3):440–449PubMedCrossRefGoogle Scholar
  25. Chen PH, Liu HL, Chen YJ, Cheng YJ, Lin WL, Yeha CH, Chang CH (2012) Enhancing CO2 bio-mitigation by genetic engineering of cyanobacteria. Energy Environ Sci 5:8318–8327CrossRefGoogle Scholar
  26. Cohen Y (2002) Bioremediation of oil by marine microbial mats. Int Microbiol 5(4):189–193PubMedCrossRefGoogle Scholar
  27. Cohen RRH (2006) Use of microbes for cost reduction of metal removal from metals and mining industry waste streams. J Clean Prod 14:1146–1157CrossRefGoogle Scholar
  28. Dahms HU, Ying X, Pfeiffer C (2006) Antifouling potential of cyanobacteria: a mini-review. Biofouling 22(5–6):317–327PubMedCrossRefGoogle Scholar
  29. De Caire GZ, De Cano MS, De Mule MCZ, De Halperin DR (1990) Antimycotic products from the cyanobacterium Nostoc muscorum against Rhizoctonia solani. Phyton 51:1–4Google Scholar
  30. De Philippis R, Colica G, Micheletti E (2011) Exopolysaccharide producing cyanobacteria in heavy metal removal from water: Molecular basis and practical applicability of the biosorption process. Appl Microbiol Biotechnol 92:697–708PubMedCrossRefGoogle Scholar
  31. Dellamatrice PM, Silva-Stenicob ME, de Moraesc LAB, Fioreb MF, Monteiro RTR (2016) Degradation of textile dyes by cyanobacteria. Braz J Microbiol.
  32. Dong W, Zhang X, Wang H, Dai X, Sun X, Qiu W, Yang F (2012) Effect of different fertilizer application on the soil fertility of paddy soils in red soil region of southern China. PLoS One 7(9):e44504PubMedPubMedCentralCrossRefGoogle Scholar
  33. Du Jardin P (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci Hort 196:3–14CrossRefGoogle Scholar
  34. El-Bestawy EA, Abd El-Salam AZ, Mansy AERH (2007) Potential use of environmental cyanobacterial species in bioremediation on lindane-contaminated effluents. Int Biodeterior Biodegrad 59:180–192CrossRefGoogle Scholar
  35. Fernandez VE, Ucha A, Quesada A, Leganes F, Carreres R (2000) Contribution of N2 fixing cyanobacteria to rice production: availability of nitrogen from 15N labeled cyanobacteria and ammonium sulphate to rice. Plant Soil 221:107–112CrossRefGoogle Scholar
  36. Finkelstein R (2013) Abscisic acid synthesis and response. The Arabidopsis Book 11:e0166.
  37. Flaibani A, Olsen Y, Painter TJ (1989) Polysaccharides in desert reclamation: compositions of exocellular proteoglycan complexes produced by filamentous blue-green and unicellular green edaphic algae. Carbohydr Res 190(2):235–248CrossRefGoogle Scholar
  38. Flores E, Wolk CP (1986) Production, by filamentous, nitrogen-fixing cyanobacteria, of a bacteriocin and of other antibiotics that kill related strains. Arch Microbiol 145(3):215–219PubMedCrossRefGoogle Scholar
  39. Forlani G, Pavan M, Gramek M, Kafarski P, Lipok J (2008) Biochemical bases for a widespread tolerance of cyanobacteria to the phosphonate herbicide glyphosate. Plant Cell Physiol 49(3):443–456PubMedCrossRefGoogle Scholar
  40. Gantar M, Kerby NW, Rowell P, Obreht Z, Scrimgeour R (1995a) Colonization of wheat (Triticum vulgare L.) by N2-fixing cyanobacteria. IV. Dark nitrogenase activity and effects of cyanobacteria on natural 15N abundance on plants. New Phytol 129:337–343CrossRefGoogle Scholar
  41. Gantar M, Rowell P, Kerby NW, Sutherland IW (1995b) Role of extracellular polysaccharide in the colonization of wheat (Triticum vulgare L.) roots by N2-fixing cyanobacteria. Biol Fertil Soils 19:41–48CrossRefGoogle Scholar
  42. Gerjets T, Sandmann G (2006) Keto-carotenoid formation in transgenic potato. J Exp Bot 57(14):3639–3645PubMedCrossRefGoogle Scholar
  43. Gol’din E (2012) Biologically active microalgae and cyanobacteria in nature and marine biotechnology. Turk J Fish Aquat Sci 12:423–442Google Scholar
  44. Gopalaswamy G, Karthikeyan CV, Raghu R, Udayasuriyan V, Apte SK (2007) Identification of acid-stress-tolerant proteins from promising cyanobacterial isolates. J Appl Phycol 19:631–639CrossRefGoogle Scholar
  45. Greene B, McPherson R, Darnall D (1987) Algal sorbents for selective metal ion recovery. In: Patterson JW, Passion R (eds) Lewis Publishers, Chelsea, pp 315–338Google Scholar
  46. Gupta R, Chakrabarty SK (2013) Gibberellic acid in plant: still a mystery unresolved. Plant Signal Behav 8(9):e25504PubMedPubMedCentralCrossRefGoogle Scholar
  47. Haggog WM, Abouziena HF, MSA Abd EWM, Hoballa E, Islam AE (2015) Application of blue-green algae for integrated disease management of barley against foliar pathogens. J Chem Pharm Res 7(10):266–272Google Scholar
  48. Hagmann L, Juttner F (1996) Fischerellin A, a novel photosystem-II- inhibiting allelochemical of the cyanobacterium Fischerella muscicola with antifungal and herbicidal activity. Tetrahedron Lett 37:6539–6542CrossRefGoogle Scholar
  49. Harada KI, Suomalainen M, Uchida H, Masul H, Ohmura K, Kiviranta J, Niku-Paavola ML, Ikemoto T (2000) Insecticidal compounds against mosquito larvae from Oscillatoria agardhii Strain 27. Environ Toxicol 15:114–119CrossRefGoogle Scholar
  50. Häusler RE, Hirsch HJ, Kreuzaler F, Peterhansel C (2002) Overexpression of C4-cycle enzymes in transgenic C3 plants: a biotechnological approach to improve C3 photosynthesis. J Exp Bot 53:591–607PubMedCrossRefGoogle Scholar
  51. Ishizaki-Nishizawa O, Fujii T, Azuma M, Sekiguchi K, Murata N, Ohtani T, Toguri T (1996) Low-temperature resistance of higher plants is significantly enhanced by a nonspecific cyanobacterial desaturase. Nat Biotechnol 14(8):1003–1006PubMedCrossRefGoogle Scholar
  52. Issa AA, Abd-Alla MH, Ohyama T (2014) Nitrogen fixing cyanobacteria: future prospect. In: Ohyama T (ed) Advances in biology and ecology of nitrogen fixation. In Tech, RijekaGoogle Scholar
  53. Jacob-Lopes E, Scoparo CHG, Franco TT (2008) Rates of CO2 removal by Aphanothece microscopica Nageli in tubular photobioreactors. Chem Eng Process 47:1371–1379CrossRefGoogle Scholar
  54. Jaiswal P, Kashyap AK, Prasanna R, Singh PK (2010) Evaluating the potential of N. calcicola and its bicarbonate resistant mutant as bioameleorating agents for ‘usar’ soil. Indian J Microbiol 50(1):12–18PubMedCrossRefGoogle Scholar
  55. Kanhaiya K, Das D (2013) CO2 sequestration and hydrogen production using cyanobacteria and green algae. In: Razeghifard R (ed) Natural and artificial photosynthesis: solar power as an energy source. Wiley, New York, pp 173–215Google Scholar
  56. Karthikeyan N, Prasanna R, Sood A, Jaiswal P, Nayak S, Kaushik BD (2009) Physiological characterization and electron microscopic investigation of cyanobacteria associated with wheat rhizosphere. Folia Microbiol (Praha) 54(1):43–51CrossRefGoogle Scholar
  57. Kaushik BD (1994) Algalization of rice in salt-affected soils. Ann Agric Res 14:105–106Google Scholar
  58. Kaushik BD (1998) Use of cyanobacterial biofertiliser in rice cultivation: a technology improvement. In: Subramanian G, Kaushik BD, Venketaraman GS (eds) Cyanobacterial biotechnology. Oxford and IBH Publishing, New Delhi, pp 211–222Google Scholar
  59. Kaushik BD (2012) Developments in cyanobacterial biofertilizer. Proc Indian Nat Acad 80:379–388CrossRefGoogle Scholar
  60. Kaushik BD, Subhashini D (1985) Amelioration of salt affected soils with blue-green algae II. Improvement in soil properties. Proc Indian Nat Sci Acad B51:386–389Google Scholar
  61. Kaushik BD, Venkataraman GS (1983) Response of cyanobacterial nitrogen fixation to insecticides. Curr Sci 52:321–323Google Scholar
  62. Kim J, Kim JD (2008) Inhibitory effect of algal extracts on mycelia growth of the tomato-wilt pathogen, Fusarium oxysporum f. sp. lycopersici. Mycobiol 36:242–248CrossRefGoogle Scholar
  63. Kiviranta J, Abdel-Hameed A (1994) Toxicity of the blue-green alga Oscillatoria agardhii to the mosquito Aedes aegypti and the shrimp Artemia salina. World J Microbiol Biotechnol 10(5):517–520PubMedCrossRefGoogle Scholar
  64. Kulik MM (1995) The potential for using cyanobacteria (blue-green algae) and algae in the biological control of plant pathogenic bacteria and fungi. Eur J Plant Path 101:585–599CrossRefGoogle Scholar
  65. Kumar D, Gaur JP (2014) Growth and metal removal potential of a Phormidium bigranulatum-dominated mat following long-term exposure to elevated levels of copper. Environ Sci Pollut Res 21:10279–10285CrossRefGoogle Scholar
  66. Kumar D, Prakash B, Pandey LK, Gaur JP (2010) Sorption of paraquat and 2,4-D by Oscillatoria sp.-dominated cyanobacterial mat. Appl Biochem Biotechnol 160:2475–2485PubMedCrossRefGoogle Scholar
  67. Kumar D, Rai J, Gaur JP (2012a) Removal of metal ions by Phormidium bigranulatum (Cyanobacteria)-dominated mat in batch and continuous flow systems. Bioresour Technol 104:202–207PubMedCrossRefGoogle Scholar
  68. Kumar D, Singh A, Pandey LK, Gaur JP (2012b) Sorption of methylene blue by an Oscillatoria sp.-dominated cyanobacterial mat. Biorem J 16(1):48–56CrossRefGoogle Scholar
  69. Kumar D, Yadav A, Gaur JP (2012c) Growth, composition and metal removal potential of a Phormidium bigranulatum-dominated mat at elevated levels of cadmium. Aquat Toxicol 116:24–33PubMedCrossRefGoogle Scholar
  70. Kuritz T, Wolk CP (1995) Use of filamentous cyanobacteria for biodegradation of organic pollutants. Appl Environ Microbiol 61(3):1169PubMedPubMedCentralGoogle Scholar
  71. Lagarde D, Beuf L, Vermaas W (2000) Increased production of zeaxanthin and other pigments by application of genetic engineering techniques to Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 66(1):64–72PubMedPubMedCentralCrossRefGoogle Scholar
  72. Lau NS, Matsui M, Abdullah AAA (2015) Cyanobacteria: photoautotrophic microbial factories for the sustainable synthesis of industrial products. BioMed Res Int 2015. Article ID 754934:1–9. CrossRefGoogle Scholar
  73. Lehtimaki N, Shunmugam S, Jokela J, Wahlsten M, Carmel D, Keranen M, Sivonen K, Aro EM, Allahverdiyeva Y, Mulo P (2011) Nodularin uptake and induction of oxidative stress in spinach (Spinachia oleracea). J Plant Physiol 168(6):594–600PubMedCrossRefGoogle Scholar
  74. Lieman-Hurwitz J, Rachmilevitch S, Mittler R, Marcus Y, Kaplan A (2003) Enhanced photosynthesis and growth of transgenic plants that express ictB, a gene involved in HCO3- accumulation in cyanobacteria. Plant Biotechnol J 1(1):43–50PubMedCrossRefGoogle Scholar
  75. Lunn JE, Gillespie VJ, Furbank RT (2003) Expression of a cyanobacterial sucrose-phosphate synthase from Synechocystis sp. PCC 6803 in transgenic plants. J Exp Bot 54(381):223–237PubMedCrossRefGoogle Scholar
  76. MacKintosh C, Beattie KA, Klumpp S, Cohen P, Codd GA (1990) Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett 264(2):187–192PubMedCrossRefGoogle Scholar
  77. Malik A (2004) Metal bioremediation through growing cells. Environ Int 30(2):261–278PubMedCrossRefGoogle Scholar
  78. Manasherob R, Otieno-Ayayo ZN, Ben-Dov E, Miaskovsky R, Boussiba S, Zaritsky A (2003) Enduring toxicity of transgenic Anabaena PCC 7120 expressing mosquito larvicidal genes from Bacillus thuringiensis spp. israelensis. Environ Microbiol 5(10):997–1001PubMedCrossRefGoogle Scholar
  79. Mandal B, Das SC, Mandal LN (1992) Effect of growth and subsequent decomposition of blue-green algae in the transformation of phosphorus in submerged soils. Plant Soil 143:289–297CrossRefGoogle Scholar
  80. Mandal B, Vlek PLG, Mandal LN (1999) Beneficial effects of blue-green algae and Azolla, excluding supplying nitrogen, on wet land rice fields: a review. Biol Fertil Soils 28:329–342CrossRefGoogle Scholar
  81. Manjunath M, Prasanna R, Lata DP, Singh R, Kumar A, Jaggi S (2009) Biocontrol potential of cyanobacterial metabolites against damping off disease caused by Pythium aphanidermatum in solanaceous vegetables. Arch Phytopathol Plant Protect 42:12Google Scholar
  82. Megharaj M, Venkateswarlu K, Rao AS (1987) Metabolism of monocrotophos and quinalphos by algae isolated from soil. Bull Environ Contam Toxicol 39(2):251–256PubMedCrossRefGoogle Scholar
  83. Megharaj M, Madhavi DR, Sreenivasulu C, Umamaheswari A, Venkateswarlu K (1994) Biodegradation of methyl parathion by soil isolates of microalgae and cyanobacteria. Bull Environ Contam Toxicol 53(2):292–297PubMedCrossRefGoogle Scholar
  84. Mehta SK, Gaur JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25:113–152PubMedCrossRefGoogle Scholar
  85. Mishra Y, Chaurasia N, Rai LC (2009) Heat pretreatment alleviates UV-B toxicity in the cyanobacterium Anabaena doliolum: a proteomic analysis of cross tolerance. Photochem Photobiol 85(3):824–833PubMedCrossRefGoogle Scholar
  86. Misra S, Kaushik BD (1989) Growth promoting substances of cyanobacteria II: detection of amino acids, sugars and auxins. Proc Ind Natl Sci Acad 6:499–504Google Scholar
  87. Miyagawa Y, Tamoi M, Shigeoka S (2001) Overexpression of a cyanobacterial fructose-1,6−/sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth. Nat Biotechnol 19(10):965–969PubMedCrossRefGoogle Scholar
  88. Miyasaka H, Okuhata H, Tanaka S, Onizuka T, Akiyama H (2013) Polyhydroxyalkanoate (PHA) production from carbon dioxide by recombinant cyanobacteria. In: Petre M (ed) Biochemistry, genetics and molecular biology environmental biotechnology – new approaches and prospective applications. InTech Open, pp 197–215Google Scholar
  89. Mohamed EH, Mostafa E, Metwally AM, Abd AI, Mona MI (2011) Antagonistic activity of some fungi and cyanobacteria species. Int J Plant Pathol 2:101–114CrossRefGoogle Scholar
  90. Narayan OP, Kumari N, Bhargava P, Rajaram H, Rai LC (2016) A single gene all3940 (Dps) overexpression in Anabaena sp. PCC 7120 confers multiple abiotic stress tolerance via proteomic alterations. Func Integr Genomics 16:67–78CrossRefGoogle Scholar
  91. Narro ML, Cerniglia CE, Van BC, Gibson DT (1992) Metabolism of phenanthrene by the marine cyanobacterium Agmenellum quadruplicate PR-6. Appl Environ Microbiol 58:1351–1359PubMedPubMedCentralGoogle Scholar
  92. Nelson DE, Shen B, Bohnert HJ (1998) Salinity tolerance mechanisms, models and the metabolic engineering of complex traits. In: Setlow J (ed) Genetic engineering, principles and methods, vol 20. Plenum Press, New York, pp 153–176Google Scholar
  93. Obreht Z, Kerby NW, Gantar M, Rowell P (1993) Effects of root associated N2-fixing cyanobacteria on the growth and nitrogen content of wheat (Triticum vulgare L.) seedlings. Biol Fertil Soils 15:68–72CrossRefGoogle Scholar
  94. Orlova IV, Serebriiskaya TS, Popov V, Merkulova N, Nosov AM, Trunova TI, Tsydendambaev VD, Los DA (2003) Transformation of tobacco with a gene for the thermophilic acyl-lipid desaturase enhances the chilling tolerance of plants. Plant Cell Physiol 44:447–450PubMedCrossRefGoogle Scholar
  95. Pabbi S, Vaishya AK (1992) Effect of insecticides on cyanobacterial growth and nitrogen fixation. In: Kaushik BD (ed) Proceeding of the 1992 National Symposium on Cyanobacterial Nitrogen Fixation. Indian Agriculture Research Institute, New Delhi, pp 389–493Google Scholar
  96. Pandey S, Rai R, Rai LC (2012) Proteomics combines morphological, physiological and biochemical attributes to unravel the survival strategy of Anabaena sp. PCC 7120 under arsenic stress. J Proteome 75:921–937CrossRefGoogle Scholar
  97. Pandey S, Shrivastava AK, Rai R, Rai LC (2013a) Molecular characterization of Alr1105 a novel arsenate reductase of the diazotrophic cyanobacterium Anabaena sp. PCC7120 and decoding its role in abiotic stress management in Escherichia coli. Plant Mol Biol 83:417–432PubMedCrossRefGoogle Scholar
  98. Pandey S, Shrivastava AK, Singh VK, Rai R, Singh PK, Rai S, Rai LC (2013b) A new arsenate reductase involved in arsenic detoxification in Anabaena sp. PCC7120. Funct Integr Genomics 13:43–55PubMedCrossRefGoogle Scholar
  99. Park Y-I, Snadstro¨m S, Gustafsson P, O¨quist G (1998) Expression of the isiA gene is essential for the survival of the cyanobacterium Synechococcus sp. PCC7942 by protecting photosystem II from excess light under iron limitation. Mol Microbiol 32:123–129CrossRefGoogle Scholar
  100. Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14(3):290–295PubMedCrossRefGoogle Scholar
  101. Peters GA, Toia REJ, Lough SM (1977) The Azolla-Anabaena azollae relationship. V.15 N2 fixation, acetylene reduction and H2 production. Plant Physiol 59:1021–1025PubMedPubMedCentralCrossRefGoogle Scholar
  102. Pohl P, Schimmack W (2006) Adsorption of radionuclides (134Cs, 85Sr, 226Ra, 241Am) by extracted biomasses of cyanobacteria (Nostoc carneum, N. insulare, Oscillatoria geminata and Spirulina laxissima) and Phaeophyceae (Laminaria digitata and L. japonica; waste products from alginate production) at different pH. J Appl Phycol 18:135–143CrossRefGoogle Scholar
  103. Pradhan S, Rai LC (2000) Optimization of flow rate, initial metal ion concentration and biomass density for maximum removal of Cu2+ by immobilized Microcystis. World J Microbiol Biotechnol 16:579–584CrossRefGoogle Scholar
  104. Quintana N, Kooy FV, Miranda DVR et al (2011) Renewable energy from cyanobacteria: energy production optimization by metabolic pathway engineering. Appl Microbiol Biotechnol 91:471–490PubMedPubMedCentralCrossRefGoogle Scholar
  105. Radwan SS, Al-Hasan RH (2000) Oil pollution and cyanobacteria. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer Academic Publishers, Berlin, pp 307–319Google Scholar
  106. Raghukumar C, Vipparty V, David JJ, Chandramohan D (2001) Degradation of crude oil by marine cyanobacteria. Appl Microbiol Biotechnol 57:433–436PubMedCrossRefGoogle Scholar
  107. Rai LC, Singh S, Pradhan S (1998) Biotechnological potential of naturally occurring and laboratory grown Microcystis in biosorption of Ni2+ and Cd2+. Curr Sci 74:461–463Google Scholar
  108. Reddy AS, Thomas TL (1996) Expression of a cyanobacteria delta 6-desaturase gene results in gamma-linolenic acid production in transgenic plants. Nat Biotechnol 14:639–642PubMedCrossRefGoogle Scholar
  109. Reza MA, Goldenkova-Pavlova IV, Pchelkin VP, Tsydendambaev VD, Los DA, Nosov AM (2007) Acyl-lipid D12-desaturase of the cyanobacterium increases the unsaturation degree in transgenic potato (Solanum tuberosum L). Biologia 53:4–7Google Scholar
  110. Roychoudhury P, Kaushik BD (1989) Solubilization of Mussorie rock phosphates by cyanobacteria. Curr Sci 58:569–570Google Scholar
  111. Saha KC, Mandal LN (1979) Effect of algal growth on the availability of P, Fe, and Mn in rice soils. Plant Soil 52:139–149CrossRefGoogle Scholar
  112. Sahu D, Priyadarshani I, Rath B (2012) Cyanobacteria- as Potential Biofertilizer. CIBTech J Microbiol 1:20–26Google Scholar
  113. Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in nonlegume plants. Ann Bot 111(5):743–767PubMedPubMedCentralCrossRefGoogle Scholar
  114. Savci S (2012) An agricultural pollutant: chemical fertilizer. Int J Environ Sci Dev 3(1):73CrossRefGoogle Scholar
  115. Semple KT, Ronald BC, Stefan S (1999) Biodegradation of aromatic compounds by microalgae. Mini Rev FEMS Microbiol Lett 170:291–300CrossRefGoogle Scholar
  116. Sharma S (2012) Bioremediation: features, strategies and applications. J Pharma Life Sci 2:7–12Google Scholar
  117. Shashirekha S, Uma L, Subramanian G (1997) Phenol degradation by the marine cyanobacterium Phormidium valderianum BDU-30501. J Ind Microbiol Biotechnol 19:130–133CrossRefGoogle Scholar
  118. Shrivastava AK, Pandey S, Singh PK, Rai S, Rai LC (2012) alr0882 encoding a hypothetical protein of Anabaena sp. PCC7120 protects Escherichia coli from nutrient starvation and abiotic stresses. Gene 511:248–255PubMedCrossRefGoogle Scholar
  119. Shrivastava AK, Singh S, Singh PK, Pandey S, Rai LC (2014) A novel alkyl hydroperoxidase (AhpD) of Anabaena PCC7120 confers abiotic stress tolerance in Escherichia coli. Func Integr Genomics 15:77. CrossRefGoogle Scholar
  120. Shunmugam S, Jokela J, Wahlsten M, Battchikova N, Rehman AU, Vass I, Karonen M (2014) Secondary metabolite from Nostoc XPORK14A inhibits photosynthesis and growth of SynechocystisPCC 6803. Plant Cell Environ 37:1371–1381PubMedCrossRefGoogle Scholar
  121. Singh RN (1950) Reclamation of “Usar” lands in India through blue-green algae. Nature 165:325–326CrossRefGoogle Scholar
  122. Singh RN (1961) Role of blue-green algae in nitrogen economy of Indian agriculture. Indian Council of Agricultural Research, New Delhi, p 175Google Scholar
  123. Singh AL, Singh PK (1987) Influence of Azolla management on the growth, yield of rice and soil fertility. II. N and P contents of plants and soil. Plant Soil 102:49–54CrossRefGoogle Scholar
  124. Singh V, Singh DV (2015) Cyanobacteria modulated changes and its impact on bioremediation of saline-alkaline soils Bangladesh. J Bot 44(4):653–658Google Scholar
  125. Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353CrossRefGoogle Scholar
  126. Singh N, Dhar DW, Tabassum R (2014) Review: role of cyanobacteria in crop protection. Proc Natl Acad Sci.
  127. Singh JS, Kumar A, Rai AN, Singh DP (2016) Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol 7:529PubMedPubMedCentralGoogle Scholar
  128. Sokhoh NA, Al-Hasan RH, Radwan SS, Hopner T (1992) Self-cleaning of the Gulf. Nature 359:109CrossRefGoogle Scholar
  129. Song T, Martensson L, Eriksson T, Zheng W, Rasmussen U (2005) Biodiversity and seasonal variation of the cyanobacterial assemblage in a rice paddy field in Fujian, China. FEMS Microbiol Ecol 54:131–140PubMedCrossRefGoogle Scholar
  130. Spaepen S, Vanderkyden J, Remans R (2007) Indole-3- acetic acid in microbial and microorganism – plant signaling. FEMS Microbiol Rev 31:425–448PubMedCrossRefGoogle Scholar
  131. Stal L (2007) Cyanobacteria. Algae Cyanobacteria Extreme Environ 11:659–680CrossRefGoogle Scholar
  132. Stewart WDP, Fitzgerald GP, Burns RH (1968) Acetylene reduction by nitrogen-fixing blue-green algae. Arch Microbiol 62:336–348Google Scholar
  133. Sundquist ER, Burrus S, Faulkner R et al (2008) Carbon sequestration to mitigate climate changes: U.S. Geological Survey Fact sheet, 2008–2007Google Scholar
  134. Sutton (2004) A perspective on environmental sustainability?
  135. Szabolcs I (1993) Soils and salinaization. In: Pessarakli M (ed) Handbook of plant and crop stress, vol 32. Marcel Dekker, New York, pp 344–346Google Scholar
  136. Tamoi M, Nagaoka M, Yabuta Y, Shigeoka S (2005) Carbon metabolism in the Calvin cycle. Plant Biotechnol 22:355–360CrossRefGoogle Scholar
  137. Tassara C, Zaccaro MC, Storni MM, Palma M, Zulpa G (2008) Biological control of lettuce white mold with cyanobacteria. Int J Agric Biol 10:487–492Google Scholar
  138. Teuscher E, Lindequist U, Mundt S (1992) Cyanobakterien, quellen biogener Wirkstoffe. Pharm Ztg Wiss 137:57–69Google Scholar
  139. Thajuddin N, Subramanian G (2005) Cyanobacterial biodiversity and potential applications in biotechnology. Curr Sci 89:47–57Google Scholar
  140. Tiwari A, Kaur A (2014) Allelopathic impact of cyanobacteria on pathogenic fungi. Int J Pure App Biosci 2(3):63–70Google Scholar
  141. Tognetti VB, Palatnik JF, Fillat MF, Melzer M, Hajirezaei MR, Valle EM, Carrillo N (2006) Functional replacement of ferredoxin by a cyanobacterial flavodoxin in tobacco confers broad-range stress tolerance. Plant Cell 18:2035–2050PubMedPubMedCentralCrossRefGoogle Scholar
  142. Tognetti VB, Zurbriggen MD, Morandi EN, Fillat MF, Valle EM, Hajirezaei MR, Carrillo N (2007) Enhanced plant tolerance to iron starvation by functional substitution of chloroplast ferredoxin with a bacterial flavodoxin. Proc Natl Acad Sci U S A 104:11495–11500PubMedPubMedCentralCrossRefGoogle Scholar
  143. Venkataraman GS (1981) Blue-green algae for rice production – a manual for its promotion, FAOSoils Bulletin no. 46. FAO, Rome, p 102Google Scholar
  144. Verma SK, Singh SP (1990) Factors regulating copper uptake in cyanobacteria. Curr Microbiol 21:33–37CrossRefGoogle Scholar
  145. Vijayakumar S (2012) Potential applications of cyanobacteria in industrial effluents—a review. J Bioremed Biodegr 3:1–6Google Scholar
  146. Vílchez C, Garbayo I, Lobato MV et al (1997) Microalgae mediated chemicals production and wastes removal. Enzym Microb Technol 20:562–572CrossRefGoogle Scholar
  147. Wagner SC (2012) Biological nitrogen fixation. Nat Educ Knowl 3(10):15Google Scholar
  148. Wagner T, Windho¨vel U, Ro¨mer S (2002) Transformation of tobacco with a mutated cyanobacterial phytoene desaturase gene confers resistance to bleaching herbicides. Z Natuforsch 57c:671–679Google Scholar
  149. Werner T, Nehnevajova E, Kollmer I, Novak O, Strnd M, Kramer U, Schmulling T (2010) Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and Tobacco. Plant Cell 22:3905–3920PubMedPubMedCentralCrossRefGoogle Scholar
  150. Wolf AM, Baker DE, Pionke HB, Kunichi HM (1985) Soil test for estimating labile, soluble and algal available phosphorus in agricultural soils. J Environ Qual 14:341–348CrossRefGoogle Scholar
  151. Yan GA, Jiang JW, Wu G, Yan X (1998) Disappearance of linear alkylbenzene sulfonate from different cultures with Anabaena sp. HB 1017. Bull Environ Contam Toxicol 60:329–334PubMedCrossRefGoogle Scholar
  152. Yanni YG, Abdallah FE (1990) Role of algalization in rice growth, yield and incidence of infestation with the stem borer Chilo agamemnon Bles and the leaf miner Hydrellia prosternalis Deeming in the Nile Delta. World J Microbiol Biotechnol 6:383–389PubMedCrossRefGoogle Scholar
  153. Yee N, Benning LG, Phoenix VR, Ferris FG (2004) Characterization of metal-cyanobacteria sorption reactions: A combined macroscopic and infrared spectroscopic investigation. Environ Sci Technol 38:775–782PubMedCrossRefGoogle Scholar
  154. Youssef MM, Ali MS (1998) Management of Meloidogyne incognita infecting cowpea by using some native blue-green algae. Anzeigerfür Schädlingskunde, Pflanzenschutz, Umweltschutz 71(1):15–16CrossRefGoogle Scholar
  155. Yuen GY, Craig LM, Kerr ED, Steadman JR (1994) Influences of antagonist population levels, blossom development stage and canopy temperature on the inhibition of the Sclerotinia sclerotiorum on dry edible bean by Erwinia herbicola. Phytopathology 84:495–501CrossRefGoogle Scholar
  156. Zaritsky A, Ben-Dov E, Borovsky D, Boussiba S, Einav M, Gindin G, Horowitz AR, Kolot M, Melnikov O, Mendel Z, Yagil E (2010) Transgenic organisms expressing genes from Bacillus thuringiensis to combat insect pests. Bioeng Bugs 1:341–344PubMedPubMedCentralCrossRefGoogle Scholar
  157. Zulpa G, Zaccaro MC, Boccazzi F, Parada JL, Storni M (2003) Bioactivity of intra and extracellular substances from cyanobacteria and lactic acid bacteria on “wood blue stain” fungi. Biol Control 27:345–348CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Shivam Yadav
    • 1
  • Shweta Rai
    • 1
  • Ruchi Rai
    • 1
  • Alka Shankar
    • 1
  • Shilpi Singh
    • 1
  • L. C. Rai
    • 1
    Email author
  1. 1.Molecular Biology Section, Centre of Advanced Study in Botany, Institute of ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations