Advertisement

Interaction Between Beneficial Bacteria and Sugarcane

  • Guilherme Grodzki Oliveira Figueiredo
  • Valeria Rosa Lopes
  • Ricardo Cancio Fendrich
  • Vivian Jaskiw Szilagyi-ZecchinEmail author
Chapter

Abstract

Eco-friendly sugarcane production is constantly faced with growing demands for increased productivity. Current biotechnology, based on growth promotion through bacterial inoculants, presents us with the opportunity to increase production without an adverse environmental impact. To this end, plant growth-promoting bacteria (PGPB) with their diverse agricultural characteristics, like nitrogen fixation and production of plant regulators, are a good choice in achieving this goal. Characterization of the abilities of different strains will define their potential use, which for the most part is not limited to a single desirable feature. Therefore, our aim was to contribute to the present understanding of the principal activities of PGPB in sugarcane, to provide some simple and common methods for selecting them, and to draw attention to sugarcane breeding for selection of responsive clones for PGPB inoculation.

Keywords

PGPB Sugarcane Inoculation Biological nitrogen fixation Saccharum sp 

Notes

Acknowledgement

We thank God and all the friends and family who supported us. Without their help, we would not have been able to contribute to this work.

References

  1. Araujo SC (2008) Realidade e perspectivas para o uso de Azospirillum na cultura do milho. Rev Inf Agron 122:4–6Google Scholar
  2. Arencibia AD, Vinagre F, Estevez Y et al (2006) Gluconoacetobacter diazotrophicus elicitate a sugarcane defense response against a pathogenic bacteria Xanthomonas albilineans. Plant Signal Behav 1(5):265–273PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ashraf MA, Rasool M, Mirza MS (2011) Nitrogen fixation and indole acetic acid production potential of bacteria isolated from rhizosphere of sugarcane (Saccharum officinarum L.) Adv Biol Res (Rennes) 5:348–355Google Scholar
  4. Baldani J, Caruso L, Baldani VL et al (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29(5):911–922CrossRefGoogle Scholar
  5. Baldani JI, Reis VM, Baldani VLD, Döbereiner J (2002) Review: a brief story of nitrogen fixation in sugarcane—reasons for success in Brazil. Funct Plant Biol 29:417–423CrossRefGoogle Scholar
  6. Barbosa HR, Alterthum F (1992) The role of extracellular polysaccharide in cell viability and nitrogenase activity of Beijerinckia derxii. Can J Microbiol 38(9):986–988CrossRefGoogle Scholar
  7. Bashan Y, Bashan LE (2011) How the plant growth-promoting bacterium Azospirillum promotes plant growth: a critical assessment. Adv Agron 108:77–136CrossRefGoogle Scholar
  8. Bashan Y, Bustillos JJ, Leyva LA et al (2006) Increase in auxiliary photoprotective photosynthetic pigments in wheat seedlings induced by Azospirillum brasilense. Biol Fertil Soils 42(4):279–285CrossRefGoogle Scholar
  9. Bastián F, Cohen A, Piccoli P et al (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul 24(1):7–11CrossRefGoogle Scholar
  10. Beneduzi A, Costa PB, Parma M et al (2010) Paenibacillus riograndensis sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Triticum aestivum. Int J Syst Evol Microbiol 60:128–133PubMedCrossRefGoogle Scholar
  11. Beneduzi A, Moreira F, Costa PB et al (2013) Diversity and plant growth promoting evaluation abilities of bacteria isolated from sugarcane cultivated in the South of Brazil. Appl Soil Ecol 63:94–104CrossRefGoogle Scholar
  12. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350PubMedCrossRefGoogle Scholar
  13. Blackburn F (1984) Sugar-cane, 1st edn. Longman, London/New York. 414 pGoogle Scholar
  14. Boddey RM, Urquiaga S, Reis V et al (1991) Biological nitrogen fixation associated with sugar cane. In: Nitrogen Fixation, Springer Netherlands, p 105–111Google Scholar
  15. Boddey RM, Reis VM, Urquiaga S et al (1995) N2 fixation in sugar cane: the role of Acetobacter diazotrophicus. In: Nitrogen fixation: fundamentals and applications. Springer, Dordrecht, pp 641–646CrossRefGoogle Scholar
  16. Boddey RM, Urquiaga S, Alves BJR, Reis V (2003) Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252:139–149CrossRefGoogle Scholar
  17. Bonnett G, Casu R, Rae A et al (2004) Identification of genes contributing to high sucrose accumulation in sugarcane. In: 4th International Crop Science Congress, Austrália, 2004. Anais…. The Regional Institute Ltd, AustraliaGoogle Scholar
  18. Calija V, Higgins AJ, Jackson PA et al (2001) An operations research approaches to the problem of the sugarcane selection. Ann Oper Res, Netherlands 108:123–142CrossRefGoogle Scholar
  19. Canhoto JM (2010) Biotecnologia vegetal da clonagem de plantas à transformação genética. Imprensa da Universidade de Coimbra/Coimbra University Press, CoimbraCrossRefGoogle Scholar
  20. Cesnik R, Miocque JJY (2004) Melhoramento da cana-de- açúcar. Embrapa, BrasíliaGoogle Scholar
  21. Chauhan H, Bagyaraj DJ, Sharma A (2013) Plant growth-promoting bacterial endophytes from sugarcane and their potential in promoting growth of the host under field conditions. Exp Agric 49:43–52.  https://doi.org/10.1017/S0014479712001019 CrossRefGoogle Scholar
  22. Chaves VA (2014) Desenvolvimento inicial e acúmulo de nutrientes em três variedades de cana-de-açúcar inoculadas com bactérias diazotróficas. Dissertation, Universidade Federal Rural do Rio de JaneiroGoogle Scholar
  23. Cheavegatti-Gianotto A, Abreu HMC, Arruda P et al (2011) Sugarcane (Saccharum X officinarum): a reference study for the regulation of genetically modified cultivars in Brazil. Trop Plant Biol 4(1):62–89PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chung H, Park M, Madhaiyan M et al (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37(10):1970–1974CrossRefGoogle Scholar
  25. Companhia Nacional de Abastecimento (CONAB) (2016) Acompanhamento da safra brasileira de cana-de-açúcar. Available http://www.conab.gov.br/conteudos.php?a=1252&t=2&Pagina_objcmsconteudos=2#A_objcmsconteudos. Accessed 10 Dec 2016
  26. Conselho de Informações sobre Biotecnologia (CIB) (2009) Guia da cana-de- açúcar: Avanço científico beneficia o país. CIB, 20pGoogle Scholar
  27. Costa DP, Dias ACF, Durrer A et al (2014) Composição diferencial das comunidades bacterianas na rizosfera de variedades de cana-de-açúcar. Revista Brasileira de Ciência do Solo 38(6):1694–1702CrossRefGoogle Scholar
  28. Daros E, Oliveira RA, Barbosa GVS (2015) 45 anos de variedades RB de cana-de-açúcar, 1st edn. Editora Graciosa, CuritibaGoogle Scholar
  29. Dean DR, Jacobson MR (1992) Biochemical genetics of nitrogenases. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman & Hall, New York, pp 763–834Google Scholar
  30. de Bont JA, Mulder EG (1976) Invalidity of the acetylene reduction assay in alkane-utilizing, nitrogen-fixing bacteria. Appl Environ Microbiol 31(5):640–647PubMedPubMedCentralGoogle Scholar
  31. Döbereiner J, Day JM, Dart PJ (1972) Nitrogenase activity in the rhizosphere of sugar cane and some other tropical grasses. Plant Soil 37(1):191–196CrossRefGoogle Scholar
  32. Donato VMTS, Andrade AD, Souza ED et al (2004) Atividade enzimática em variedades de cana-de-açúcar cultivadas in vitro sob diferentes níveis de nitrogênio. Pesq Agrop Brasileira 39(11):1087–1093CrossRefGoogle Scholar
  33. Dong Z, Canny MJ, McCully ME et al (1994) A nitrogen-fixing endophyte of sugarcane stems (a new role for the apoplast). Plant Physiol 105(4):1139–1147PubMedPubMedCentralCrossRefGoogle Scholar
  34. Empresa Brasileira de Pesquisa Agropecuária (Embrapa) (2007) Inoculante contendo bactérias fixadoras de nitrogênio para aplicação em canade-açúcar. Available https://www.embrapa.br/agrobiologia/busca-de-projetos/-/projeto/12441/inoculante-contendo-bacterias-fixadoras-denitrogenio-para-aplicacao-em-cana-de-acucar. Accessed 5 Jun 2015
  35. Ferrel-Caballero N, Soriano B (2014) Efecto de Rhizobium etli en el crecimiento de plántulas de caña de azúcar, Saccharum officinarum, en condiciones de laboratorio. Revista Rebiolest 2(1):32–43Google Scholar
  36. Figueiredo GGO, Lopes VR, Bespalhok Filho JC et al (2013) Efeito de substratos e bactérias promotoras do crescimento vegetal na germinação de sementes de cana-de-açúcar. Revista de Ciências Agrárias 36(4):447–454Google Scholar
  37. Finkelstein R (2013) Abscisic acid synthesis and response. Arab B 11:e0166.  https://doi.org/10.1199/tab.0166 CrossRefGoogle Scholar
  38. Food and Agriculture Organization of the United Nations (FAO) (2016) Relatórios. Available http://www.fao.org/faostat/en/#data/QC. Accessed 10 Dec 2016
  39. Franklin G, Arvinth S, Sheeba CJ et al (2006) Auxin pretreatment promotes regeneration of sugarcane (Saccharum spp. hybrids) midrib segment explants. Plant Growth Regul 50:111–119CrossRefGoogle Scholar
  40. Freire JRJ, Vernetti FDJ (1999) A pesquisa com soja, a seleção de rizóbio e a produção de inoculantes no Brasil. Pesq Agrop Gaúcha 5(1):0–0Google Scholar
  41. Fuentes-Ramírez LE, Caballero-Mellado J (2006) Bacterial biofertilizers. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Holanda, pp 143–172CrossRefGoogle Scholar
  42. Fuentes-Ramirez L, Jimenez-Salgado T, Abarca-Ocampo IR et al (1993) Acetobacter diazotrophicus, an indoleacetic acid producing bacterium isolated from sugarcane cultivars of Mexico. Plant Soil 154(2):145–150CrossRefGoogle Scholar
  43. Fuentes-Ramírez LE, Caballero-Mellado J, Sepúlveda J et al (1999) Colonization of sugarcane by Acetobacter diazotrophicus is inhibited by high N-fertilization. FEMS Microbiol Ecol 29(2):117–128CrossRefGoogle Scholar
  44. Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124:509–525.  https://doi.org/10.1007/s10265-011-0412-3 PubMedCrossRefGoogle Scholar
  45. Gaiero JR, McCall CA, Thompson KA et al (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100(9):1738–1750PubMedCrossRefGoogle Scholar
  46. Garcia JC, Vitorino R, Azania CAM et al (2013) Inoculação de bactérias diazotróficas no desenvolvimento inicial de cana-de-açúcar, variedade RB867515. Nucleus 10(1):99–108CrossRefGoogle Scholar
  47. George TS, Richardson AE, Li SS et al (2009) Extracellular release of a heterologous phytase from roots of transgenic plants: does manipulation of rhizosphere biochemistry impact microbial community structure? FEMS Microbiol Ecol 70:433–445.  https://doi.org/10.1111/j.1574-6941.2009.00762.x PubMedCrossRefGoogle Scholar
  48. Gírio LAS, Dias FLF, Reis VM et al (2015) Bactérias promotoras de crescimento e adubação nitrogenada no crescimento inicial de cana-de-açúcar proveniente de mudas pré-brotadas. Pesq Agrop Brasileira 50(1):33–43CrossRefGoogle Scholar
  49. Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7.  https://doi.org/10.1016/j.femsle.2005.07.030 PubMedCrossRefGoogle Scholar
  50. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo) 2012:1–15.  https://doi.org/10.6064/2012/963401 CrossRefGoogle Scholar
  51. Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796PubMedPubMedCentralGoogle Scholar
  52. Gnanamanickam SS, Immanuel JE (2007) Epiphytic bacteria, their ecology functions. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Houten, pp 131–153Google Scholar
  53. Gonzaga GBM (2012) Avaliação do crescimento inicial da cana-de-açúcar, variedade RB867515, sob o efeito de bactérias endofíticas. Dissertation, Universidade Federal de AlagoasGoogle Scholar
  54. Gordon SA, Weber RP (1951) Colorimetric estimation of indoleacetic acid. Plant Physiol 26:192PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hardy RWF, Holsten RD, Jackson EK et al (1968) The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol 43(8):1185–1207PubMedPubMedCentralCrossRefGoogle Scholar
  56. Heldt H-W, Piechulla B (2004) Plant biochemistry. Academic Press, LondonGoogle Scholar
  57. Hodkinson TR, Chase MW, Lledó DM et al (2002) Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. J Plant Res 115(5):381–392PubMedCrossRefGoogle Scholar
  58. Huang X, Chen M-H, Yang L-T et al (2015) Effects of exogenous abscisic acid on cell membrane and endogenous hormone contents in leaves of sugarcane seedlings under cold stress. Sugar Tech 17:59–64.  https://doi.org/10.1007/s12355-014-0343-0 CrossRefGoogle Scholar
  59. Hungria M (2011) Inoculação com Azospirillum brasiliense: inovação em rendimento a baixo custo. Embrapa Soja. DocumentosGoogle Scholar
  60. James EK, Olivares FL, de Oliveira AL et al (2001) Further observations on the interaction between sugar cane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions. J Exp Bot 52(357):747–760PubMedCrossRefGoogle Scholar
  61. Jannoo N, Grivet L, Seguin M et al (1999) Molecular investigation of the genetic base of sugarcane cultivars. Theor Appl Genet 99(1–2):171–184CrossRefGoogle Scholar
  62. Karadeniz A, Topcuoğlu ŞF, İnan S (2006) Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J Microbiol Biotechnol 22:1061–1064.  https://doi.org/10.1007/s11274-005-4561-1 CrossRefGoogle Scholar
  63. Khan AL, Halo BA, Elyassi A et al (2016) Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electron J Biotechnol 21:58–64.  https://doi.org/10.1016/j.ejbt.2016.02.001 CrossRefGoogle Scholar
  64. Kimbeng CA, Cox MC (2003) Early generation selection of sugarcane families and clones in Australia: a review. J Am Soc Sugarcane Technol 23:20–39Google Scholar
  65. Kruasuwan W, Thamchaipenet A (2016) Diversity of culturable plant growth-promoting bacterial endophytes associated with sugarcane roots and their effect of growth by co-inoculation of diazotrophs and actinomycetes. J Plant Growth Regul 35:1–14.  https://doi.org/10.1007/s00344-016-9604-3 CrossRefGoogle Scholar
  66. Kumar V, Yadav KS, Chand M (2015) Effect of integrated use of various bio-fertilizers and chemical fertilizers on sugarcane production and soil biological fertility. Indian J Sugarcane Technol 30(2):98–103Google Scholar
  67. de La Cruz CPP, Bird CO, Isulat MD (2012) Sprouting, survival and growth of young sugarcane (Saccharum officinarum L.) treated with diazotrophic bacteria (Gluconacetobacter diazotrophicus). Philippine Agric Sci 95(1):106–111Google Scholar
  68. Lamizadeh E, Enayatizamir N, Motamedi H (2016) Isolation and identification of plant growth-promoting rhizobacteria (PGPR) from the rhizosphere of sugarcane in saline and non-saline soil. Int J Curr Microbiol App Sci 5(10):1072–1083CrossRefGoogle Scholar
  69. Landell MGA, Alvarez R, Zimback L et al (1999) Avaliação final de clones IAC de cana-de-açúcar da serie 1982, em Latossolo Roxo da região de Ribeirão Preto. Bragantia 58:269–280CrossRefGoogle Scholar
  70. Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731–4748.  https://doi.org/10.1093/jxb/err210 PubMedCrossRefGoogle Scholar
  71. Leite MCBS, Farias A, Freire FJ et al (2014) Isolation, bioprospecting and diversity of salt-tolerant bacteria associated with sugarcane in soils of Pernambuco, Brazil. Revista Brasileira de Engenharia Agrícola e Ambiental 18:S73–S79CrossRefGoogle Scholar
  72. Lin L, Li Z, Hu C et al (2012) Plant growth-promoting nitrogen-fixing enterobacteria are in association with sugarcane plants growing in Guangxi, China. Microbes Environ 27(391–398):2012.  https://doi.org/10.1264/jsme2.ME11275 Google Scholar
  73. Lopes VR, Bespalhok-Filho JC, Araujo LM et al (2012) The selection of sugarcane families that display better associations with plant growth promoting rhizobacteria. J Agron 11(2):43–52CrossRefGoogle Scholar
  74. Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25PubMedCrossRefGoogle Scholar
  75. Luz WD (1996) Rizobactérias promotoras de crescimento de plantas e de bioproteção. Revisão Anual de Patologia de Plantas 4(2):1–96Google Scholar
  76. Magnani GS, Didonet CM, Cruz LM et al (2010) Diversity of endophytic bacteria in Brazilian sugarcane. Genet Mol Res 9(1):250–258PubMedCrossRefGoogle Scholar
  77. Manners J, Mcintyre L, Casu R et al (2004) Can genomics revolutionize genetics and breeding in sugarcane? In: 4th International Crop Science Congress, 2004. Anais… The Regional Institute Ltd, Australia. Available http://www.regional.org.au/au/asa/2004/poster/3/1/1793_mannersj.htm Accessed 8 Dec 2016
  78. Marcos FCC (2012) Influência de bactérias endofíticas na fisiologia de plantas de cana-de-açúcar sob restrição hídrica. Dissertation, Instituto Agronômico de CampinasGoogle Scholar
  79. Marcos FCC, Iório RDPF, Silveira APDD et al (2016) Endophytic bacteria affect sugarcane physiology without changing plant growth. Bragantia 75(1):1–9CrossRefGoogle Scholar
  80. Matsuoka S, Garcia AAF, Arizono H (2005) Melhoramento da cana-de-açúcar. In: Borem A (ed) Melhoramento de espécies cultivadas. UFV, Viçosa, pp 205–251Google Scholar
  81. Maule RF, Mazza JA, Marta JRGB (2001) Produtividade agrícola de cultivares de cana-de-açúcar em diferentes solos e épocas de colheita. Sci Agric 58:295–301CrossRefGoogle Scholar
  82. McSteen P (2010) Auxin and monocot development. Cold Spring Harb Perspect Biol 2:a001479PubMedPubMedCentralCrossRefGoogle Scholar
  83. Mehnaz S (2013) Microbes–friends and foes of sugarcane. J Basic Microbiol 53(12):954–971PubMedCrossRefGoogle Scholar
  84. Ministério Da Agricultura Pecuária E Abastecimento (Mapa) (2012) Cana-de-açúcar. Available http://www.agricultura.gov.br/vegetal/culturas/cana-de-acucar. Accessed 15 Jan 2013
  85. Mirza MS, Ahmad W, Latif F et al (2001) Isolation, partial characterization, and the effect of plant growth-promoting bacteria (PGPB) on micro-propagated sugarcane in vitro. Plant Soil 237(1):47–54CrossRefGoogle Scholar
  86. Moore PH, Botha FC (2013) Sugarcane: physiology, biochemistry and functional biology. Wiley, ChichesterCrossRefGoogle Scholar
  87. Morais LK, Silva PDA, Reis V et al (2011) Evaluation of performance of sugarcane genotypes inoculated with endophytic diazotropic bactéria. In: International Sugar Conference, 4., 2011. Nova Delhi. Balancing sugar and energy production in developing countries: sustainable technologies and marketing strategiesGoogle Scholar
  88. Moreira WMQ (2013) Estudo da diversidade e atividade bacteriana em solos de floresta e sob cultivo de cana-de-açúcar. Dissertation, Faculdade de Ciências Agrárias e VeterináriasGoogle Scholar
  89. Moreira FMS, Siqueira JO (2006) Microbiologia e bioquímica do solo. Editora UFLA, LavrasGoogle Scholar
  90. Moutia JFY, Saumtally S, Spaepen S et al (2010) Plant growth promotion by Azospirillum sp. in sugarcane is influenced by genotype and drought stress. Plant Soil 337(1–2):233–242CrossRefGoogle Scholar
  91. Muangthong A, Youpensuk S, Rerkasem B (2015) Isolation and characterisation of endophytic nitrogen fixing bacteria in sugarcane. Trop Life Sci Res 26(1):41–51PubMedPubMedCentralGoogle Scholar
  92. Muñoz-Rojas J, Caballero-Mellado J (2003) Population dynamics of Gluconacetobacter diazotrophicus in sugarcane cultivars and its effect on plant growth. Microb Ecol 46:454–464PubMedCrossRefGoogle Scholar
  93. Muwamba A, Nkedi-Kizza P, Morgan KT (2016) Determination of sorption coefficient of phosphorus applied for sugarcane production in southwestern Florida. J Environ Qual 45:1760–1768.  https://doi.org/10.2134/jeq2016.03.0087 PubMedCrossRefGoogle Scholar
  94. Nadar HM, Soepraptopo S, Heinz DJ, Ladd SL (1978) Fine structure of sugarcane (Saccharum sp.) callus and the role of auxin in embryogenesis. Crop Sci 18:210–216CrossRefGoogle Scholar
  95. Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185.  https://doi.org/10.1146/annurev.arplant.56.032604.144046 PubMedCrossRefGoogle Scholar
  96. Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170(1):265–270PubMedCrossRefGoogle Scholar
  97. Okazaki S, Nukui N, Sugawara M et al (2004) Rhizobial strategies to enhance symbiotic interactions: rhizobitoxine and 1-aminocyclopropane- 1-carboxylate deaminase. Microbes Environ 19(2):99–111CrossRefGoogle Scholar
  98. Okon Y, Labandera-Gonzales C, Lage M et al (2015) Agronomic applications of Azospirillum and other PGPR biological nitrogen fixation. In: Bruijn D (ed) Biologcal nitrogen fixation, vol 2. Wiley Blackwell, Hoboken, pp 925–936CrossRefGoogle Scholar
  99. Olivares FL, Baldani VL, Reis VM et al (1996) Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems, and leaves, predominantly of Gramineae. Biol Fertil Soils 21(3):197–200CrossRefGoogle Scholar
  100. Olivares FL, James EK, Baldani JI et al (1997) Infection of mottled stripe disease-susceptible and resistant sugar cane varieties by the endophytic diazotroph Herbaspirilium. New Phytol 135(4):723–737CrossRefGoogle Scholar
  101. Oliveira AD, Urquiaga S, Döbereiner J et al (2002) The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant Soil 242(2):205–215CrossRefGoogle Scholar
  102. Oliveira AL, Canuto EL, Silva EE et al (2004) Survival of endophytic diazotrophic bacteria in soil under different moisture levels. Braz J Microbiol 35(4):295–299CrossRefGoogle Scholar
  103. Oliveira ALM, Canuto EL, Urquiaga S et al (2006) Yield of micropropagated sugarcane varieties in different soil types following inoculation with diazotrophic bacteria. Plant Soil 284(1–2):23–32CrossRefGoogle Scholar
  104. Oliveira FLN, Stamford NP, Simões Neto DE et al (2015) Effects of biofertilizers produced from rocks and organic matter, enriched by diazotrophic bacteria inoculation on growth and yield of sugarcane. Aust J Crop Sci 9(6):504–508Google Scholar
  105. Oliver R (2014) Interação entre bactérias diazotróficas e doses de n-fertilizante na cultura da cana-de-açúcar. Dissertation, Faculdade de Ciências Agronômicas da UNESPGoogle Scholar
  106. Pandya ND, Butani NV, Desai PV et al (2011) Optimization of GA3 biosynthesis by bacteria associated with the rhizosphere of sugarcane. Plant Growth-Promoting Rhizobacteria (PGPR) for Sustainable Agriculture. pp. 447–454Google Scholar
  107. Parnell JJ, Berka R, Young HA et al (2016) From the lab to the farm: an industrial perspective of plant beneficial microorganisms. Front Plant Sci 7:1110PubMedPubMedCentralCrossRefGoogle Scholar
  108. Pedula RO, Schultz N, Monteiro RC et al (2016) Growth analysis of sugarcane inoculated with diazotrophic bacteria and nitrogen fertilization. Afr J Agric Res 11(30):2786–2795CrossRefGoogle Scholar
  109. Pereira APA, Silva MCB, Oliveira JRS et al (2012) Influência da salinidade sobre o crescimento e a produção de ácido indol acético de Burkholderia spp. endofíticas de cana-de-açúcar. Biosci J 28(1):112–121Google Scholar
  110. Pereira W, Leite JM, Hipólito GS et al (2013) Acúmulo de biomassa em variedades de cana-de-açúcar inoculadas com diferentes estirpes de bactérias diazotróficas. Rev Ciênc Agron 44(2):363–370CrossRefGoogle Scholar
  111. Pérez J, Casas M (2005) Estudio de la interaccion planta-Azospirillum en el cultivo cana de azucar (Saccharum sp.) Cultivos Tropicales 26(4):13–20Google Scholar
  112. Pérez YF, Osa AD, Restrepo-Franco GM et al (2015) Diversidad de bacterias diazotróficas asociativas potencialmente eficientes en cultivos de importancia económica. Cuban J Biol Sci/Revista Cubana de Ciencias Biológicas 4(1):17–26Google Scholar
  113. Perin L, Araújo JLM, Reis VM (2007) Aspectos genéticos e moleculares na interação entre organismos patogênicos e diazotróficos em cana-de-açúcar. Embrapa Agrobiologia. DocumentosGoogle Scholar
  114. Perry LG, Alford ER, Horiuchi J et al (2007) Chemical signals in the rhizosphere: root-root and root-microbe communication. In: Pinton R, Varanini Z, Nannipieri P (eds) The Rhizosphere: biochemistry and organic substances at the soil-plant interface. CRC Press, Boca Raton, pp 297–330Google Scholar
  115. Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17:e370–e370Google Scholar
  116. Pilet PE, Chollet R (1970) Sur le dosage colorimétrique de l’acide indolylacétique. CR Acad Sci Ser D 271:1675–1678Google Scholar
  117. Polidoro JC, Resende AS, Quesada DM et al (2001) Levantamento da contribuição da fixação biológica de nitrogênio para a cultura da cana-de-açúcar no Brasil. Embrapa Agrobiologia. DocumentosGoogle Scholar
  118. Prado Junior JPQ (2008) Qualidade e produtividade da cana-de-açúcar inoculada com Gluconacetobacter diazotrophicus no e adubada com nitrogênio mineral e orgânico. Dissertation, Instituto Agronômico de CampinasGoogle Scholar
  119. Rattey AR, Jackson P, Wei X et al (2004) Opportunities to increase rates of parent improvement in Australian sugarcane breeding programs. In: Proceedings Australian Society of Sugar Cane Technologists. Editorial Services pp 42–42Google Scholar
  120. Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14(4):435–443PubMedCrossRefGoogle Scholar
  121. Reis, V. M. (2007). Uso de bactérias fixadoras de nitrogênio como inoculante para aplicação em gramíneas. Embrapa Agrobiologia. DocumentosGoogle Scholar
  122. Reis Junior FDB, Silva LG, Reis VM et al (2000) Ocorrência de bactérias diazotróficas em diferentes genótipos de cana-de-açúcar. Pesq Agrop Brasileira 35(5):985–994CrossRefGoogle Scholar
  123. Reis VM, Paula MA, Döbereiner J (1999) Ocorrência de micorrizas arbusculares e da bacteria diazotrófica Acetobacter diazotrophicus em cana-de-açúcar. Pesq Agrop Brasileira 34(7):1933–1941CrossRefGoogle Scholar
  124. Reis VM, Estrada-De Los Santos P, Tenorio-Salgado S et al (2004) Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int J Syst Evol Microbiol 54(6):2155–2162PubMedCrossRefGoogle Scholar
  125. Rodrigues AA, Forzani MV, Soares RDS et al (2016a) Isolation and selection of plant growth-promoting bacteria associated with sugarcane. Pesquisa Agropecuária Trop 46(2):149–158CrossRefGoogle Scholar
  126. Rodrigues EP, Soares C de P, Galvao PG et al (2016b) Identification of genes involved in Indole-3-Acetic acid biosynthesis by Gluconacetobacter diazotrophicus PAL5 strain using transposon mutagenesis. Front Microbiol 7:1572.  https://doi.org/10.3389/fmicb.2016.01572 PubMedPubMedCentralGoogle Scholar
  127. Rodrı́guez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339PubMedCrossRefGoogle Scholar
  128. Rösch C, Mergel A, Bothe H (2002) Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl Environ Microbiol 68:3818–3829PubMedPubMedCentralCrossRefGoogle Scholar
  129. Rossetto R (2008) Fertilidade do solo, nutrição e adubação. In: Dinardo-Miranda L, Vasconcelos ACM, Landell MGA (eds) Cana-de-açúcar. Instituto Agronômico de Campinas (IAC), Campinas, pp 221–238Google Scholar
  130. Santos JM (2008) Cultura da cana-de-açúcar, crédito de carbono e o desafio do desenvolvimento sustentável. Dissertation, Centro Universitário de Anápolis (Unievangélica)Google Scholar
  131. Sarwar M, Kremer RJ (1995) Determination of bacterially derived auxins using a microplate method. Lett Appl Microbiol 20:282–285CrossRefGoogle Scholar
  132. Scarpari MS, Beauclair EGF (2008) Anatomia e botânica. In: Dinardo-Miranda LL, Vasconcelos ACM, Landell MGA (eds) Cana-de-açúcar. Instituto Agronômico de Campinas (IAC), Campinas, pp 45–56Google Scholar
  133. Scharf K-D, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta 1819:104–119.  https://doi.org/10.1016/j.bbagrm.2011.10.002 PubMedCrossRefGoogle Scholar
  134. Schmatz R, Giacomini SJ, Padoin A et al (2012) Inoculação de bactérias diazotróficas e a produtividade de genótipos de cana-de-açúcar de ciclo médio-tardio. In: Anjos SD, Almeida, SIR (Embrapa Clima Temperado) (Ed) Simpósio Estadual de Agroenergia, 4.; Reunião Técnica de Agroenergia, 4., AMRIGS: Porto Alegre, 2012Google Scholar
  135. Schultz N, Morais RF, Silva JA et al (2012) Avaliação agronômica de variedades de cana-de-açúcar inoculadas com bactérias diazotróficas e adubadas com nitrogênio. Pesq Agrop Brasileira 47(2):261–268CrossRefGoogle Scholar
  136. Schultz N, Silva JAD, Sousa JS et al (2014) Inoculation of sugarcane with diazotrophic bacteria. Revista Brasileira de Ciência do Solo 38(2):407–414CrossRefGoogle Scholar
  137. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56PubMedCrossRefGoogle Scholar
  138. Segalla AL (1964) Botânica, melhoramento e variedades. In: Malavolta E, Segalla AL, Pimentel Gomes F et al (eds) Cultura e adubação da cana-de- açúcar, 1st edn. Instituto Brasileiro da Potassa, São Paulo, pp 61–98Google Scholar
  139. Silva MF, Oliveira PJ, Xavier GR et al (2009) Inoculantes formulados com polímeros e bactérias endofíticas para a cultura da cana-de-açúcar. Pesq agropec bras 44(11):1437–1443CrossRefGoogle Scholar
  140. Silva MF, Antônio CS, Oliveira PJ et al (2012) Survival of endophytic bacteria in polymer-based inoculants and efficiency of their application to sugarcane. Plant Soil 356(1–2):231–243CrossRefGoogle Scholar
  141. Silveira AB (2008) Isolamento e caracterização de linhagens de Bacillus e Paenibacillus promotores de crescimento vegetal em lavouras de arroz e trigo do Rio Grande do Sul. Dissertation, Universidade Federal do Rio Grande do Sul.Google Scholar
  142. Souza SR (2011) Reação de genótipos de cana-de- açúcar ao raquitismo da Soqueira (Leifsonia xily Subsp. xyli). Dissertation, Universidade Federal do ParanáGoogle Scholar
  143. Stamford NP, Lima RA, Santos CRS et al (2006) Rock biofertilizers with Acidithiobacillus on sugarcane yield and nutrient uptake in a Brazilian soil. Geomicrobiol J 23(5):261–265CrossRefGoogle Scholar
  144. Stevenson GC (1965) Flowering in sugarcane. In: Genetics and breeding in sugarcane. Longman, London, pp 72–79Google Scholar
  145. Suman A, Gaur A, Shrivastava AK et al (2005) Improving sugarcane growth and nutrient uptake by inoculating Gluconacetobacter diazotrophicus. Plant Growth Regul 47(2–3):155–162CrossRefGoogle Scholar
  146. Tang J, Bromfield ESP, Rodrigue N et al (2012) Microevolution of symbiotic Bradyrhizobium populations associated with soybeans in east North America. Ecol Evol 2(12):2943–2961PubMedPubMedCentralCrossRefGoogle Scholar
  147. Tejera N, Lluch C, Martinez-Toledo MV et al (2005) Isolation and characterization of Azotobacter and Azospirillum strains from the sugarcane rhizosphere. Plant Soil 270(1):223–232CrossRefGoogle Scholar
  148. Tien TM, Gaskins MH, Hubbell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.) Appl Environ Microbiol 37:1016–1024PubMedPubMedCentralGoogle Scholar
  149. Toledo LAS (2014) Evaluación del efecto de la inoculación de la bacteria Gluconactobacter diazotrophicus, en el crecimiento de plantas de caña de azúcar (Saccharum officnarum) obtenidas in vitro. Dissertation, Universidad de las Fuerzas Armadas ESPEGoogle Scholar
  150. Torriente D (2010) Aplicación de bacterias promotoras del crecimiento vegetal en el cultivo de la caña de azúcar. perspectivas de su uso en cuba. Cultivos Tropicales 31(1):19–26Google Scholar
  151. Tortora ML, Díaz-Ricci JC, Pedraza RO (2011) Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Arch Microbiol 193(4):275–286PubMedCrossRefGoogle Scholar
  152. Ullah I, Khan AR, Park G-S et al (2013) Analysis of phytohormones and phosphate solubilization in Photorhabdus spp. Food Sci Biotechnol 22:25–31.  https://doi.org/10.1007/s10068-013-0044-6 CrossRefGoogle Scholar
  153. United States Department Of Agriculture (USDA) (2012) Reports available http://www.usdabrazil.org.br/portugues/reports.asp. Accessed 20 Jan 2013
  154. Urquiaga S, Cruz KH, Boddey RM (1992) Contribution of nitrogen fixation to sugar cane: nitrogen-15 and nitrogen-balance estimates. Soil Sci Soc Am J 56(1):105–114CrossRefGoogle Scholar
  155. Vargas L, Santa Brígida AB, Mota Filho JP et al (2014) Drought tolerance conferred to sugarcane by association with Gluconacetobacter diazotrophicus: a transcriptomic view of hormone pathways. PLoS One 9(12):1–37CrossRefGoogle Scholar
  156. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586CrossRefGoogle Scholar
  157. Vian CEF (2009) Cana-de-açúcar: Alcoolquímica. Agência de Informação Embrapa. Available http://www.agencia.cnptia.embrapa.br/gestor/canade-acucar/Abertura.html. Accessed 20 Aug 2009
  158. Vitti AC, Cantarella H, Trivelin PCO et al (2008) Nitrogênio. In: Dinardo-Miranda L, Vasconcelos ACM, Landell MGA (eds) Cana-de-açúcar. Instituto Agronômico de Campinas (IAC), Campinas, pp 239–269Google Scholar
  159. Wasilewska A, Vlad F, Sirichandra C, et al (2008) An update on abscisic acid signaling in plants and more... Mol Plant 1:198–217.  https://doi.org/10.1093/mp/ssm022
  160. Wolff WM, Floss EL (2008) Correlação entre teores de nitrogênio e de clorofila na folha com o rendimento de grãos de aveia branca. Ciência rural 38(6):1510–1515CrossRefGoogle Scholar
  161. Xavier JP (2006) Contribuição da fixação biológica de nitrogênio na produção sustentável da cultura de Cana-de-Açúcar. Dissertation, Universidade Federal Rural do Rio de JaneiroGoogle Scholar
  162. Zaied KA, Abd El-Hady AH, Aida Afify H et al (2003) Yield and nitrogen assimilation of winter wheat inoculated with new recombinant inoculants of rhizobacteria. Pak J Biol Sci 6:344–358CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Guilherme Grodzki Oliveira Figueiredo
    • 1
  • Valeria Rosa Lopes
    • 1
  • Ricardo Cancio Fendrich
    • 2
  • Vivian Jaskiw Szilagyi-Zecchin
    • 1
    Email author
  1. 1.Department of Plant Science and Crop ProtectionFederal University of ParanáCuritibaBrazil
  2. 2.Department of Bioprocess Engineering and BiotechnologyFederal University of ParanáCuritibaBrazil

Personalised recommendations