Skip to main content

Doppler-Radar Based Hand Gesture Recognition System Using Convolutional Neural Networks

  • Conference paper
  • First Online:
Book cover Communications, Signal Processing, and Systems (CSPS 2017)

Abstract

Hand gesture recognition has long been a study topic in the field of Human Computer Interaction. Traditional camera-based hand gesture recognition systems can not work properly under dark circumstances. In this paper, a Doppler-Radar based hand gesture recognition system using convolutional neural networks is proposed. A cost-effective Dopper radar sensor with dual receiving channels at 5.8 GHz is used to acquire a big database of four standard gestures. The received hand gesture signals are then processed with time-frequency analysis. Convolutional neural networks are used to classify different gestures. Experimental results verify the effectiveness of the system with an accuracy of 98%. Besides, related factors such as recognition distance and gesture scale are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hjelmås, E., Low, B.K.: Face detection: a survey. Comput. Vis. Image Underst. 83(3), 236–274 (2001)

    Google Scholar 

  2. Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: a literature survey. ACM Comput. Surv. (CSUR) 35(4), 399–458 (2003)

    Google Scholar 

  3. Gavrila, D.M.: The visual analysis of human movement: a survey. Comput. Vis. Image Underst. 73(1), 82–98 (1999)

    Google Scholar 

  4. Molchanov, P., Gupta, S., Kim, K., Pulli, K.: Multi-sensor system for driver’s hand-gesture recognition. In: 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), vol. 1, pp. 1–8. IEEE (2015)

    Google Scholar 

  5. Molchanov, P., Gupta, S., Kim, K., Pulli, K.: Short-range FMCW monopulse radar for hand-gesture sensing. In: RadarCon, pp. 1491–1496. IEEE (2015)

    Google Scholar 

  6. Arbabian, A., Callender, S., Kang, S., Rangwala, M., Niknejad, A.M.: A 94 GHz mm-wave-to-baseband pulsed-radar transceiver with applications in imaging and gesture recognition. IEEE J. Solid-State Circ. 48(4), 1055–1071 (2013)

    Google Scholar 

  7. Hügler, P., Geiger, M., Waldschmidt, C.: Rcs measurements of a human hand for radar-based gesture recognition at e-band. In: Microwave Conference (GeMiC) 2016, German, pp. 259–262. IEEE (2016)

    Google Scholar 

  8. Pu, Q., Gupta, S., Gollakota, S., Patel, S.: Whole-home gesture recognition using wireless signals. In: Proceedings of the 19th Annual International Conference on Mobile Computing and Networking, pp. 27–38. ACM (2013)

    Google Scholar 

  9. Mercuri, M., Soh, P.J., Pandey, G., Karsmakers, P., Vandenbosch, G.A., Leroux, P., Schreurs, D.: Analysis of an indoor biomedical radar-based system for health monitoring. IEEE Trans. Microw. Theor. Tech. 61(5), 2061–2068 (2013)

    Google Scholar 

  10. Peng, Z., Muñoz-Ferreras, J.-M., Gómez-García, R., Li, C.: FMCW radar fall detection based on isar processing utilizing the properties of rcs, range, and doppler. In: IEEE MTT-S International on Microwave Symposium (IMS) 2016, pp. 1–3. IEEE (2016)

    Google Scholar 

  11. Zhou, Z., Zhang, J., Zhang, Y.D.: Ultra-wideband radar and vision based human motion classification for assisted living. In: 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), pp. 1–5. IEEE (2016)

    Google Scholar 

  12. Sejdić, E., Djurović, I., Jiang, J.: Time-frequency feature representation using energy concentration: an overview of recent advances. Digit. Signal Proc. 19(1), 153–183 (2009)

    Google Scholar 

  13. Mallat, S.: A Wavelet Tour of Signal Processing. Academic press, New York (1999)

    Google Scholar 

  14. LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications in vision. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 253–256. IEEE (2010)

    Google Scholar 

  15. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Google Scholar 

  16. Fan, J., Xu, W., Wu, Y., Gong, Y.: Human tracking using convolutional neural networks. IEEE Trans. Neural Netw. 21(10), 1610–1623 (2010)

    Google Scholar 

  17. LeCun, Y., Huang, F.J., Bottou, L.: Learning methods for generic object recognition with invariance to pose and lighting. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition CVPR 2004, vol. 2, pp. II–104. IEEE (2004)

    Google Scholar 

  18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  19. Ciresan, D.C., Meier, U., Masci, J., Maria Gambardella, L., Schmidhuber, J.: Flexible, high performance convolutional neural networks for image classification. In: IJCAI Proceedings, vol. 22(1), p. 1237. Barcelona, Spain (2011)

    Google Scholar 

  20. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  21. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  22. Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, W.: Deformable convolutional networks. arXiv preprint arXiv:1703.06211 (2017)

Download references

Acknowledgments

This work is supported by Intel under agreement No. CG# 30397855.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiajun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Tao, J., Shi, Z. (2019). Doppler-Radar Based Hand Gesture Recognition System Using Convolutional Neural Networks. In: Liang, Q., Mu, J., Jia, M., Wang, W., Feng, X., Zhang, B. (eds) Communications, Signal Processing, and Systems. CSPS 2017. Lecture Notes in Electrical Engineering, vol 463. Springer, Singapore. https://doi.org/10.1007/978-981-10-6571-2_132

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6571-2_132

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6570-5

  • Online ISBN: 978-981-10-6571-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics