Skip to main content

Performance Analysis of MRC Technique in DF Cognitive Relay Networks

  • Conference paper
  • First Online:
Communications, Signal Processing, and Systems (CSPS 2017)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 463))

Abstract

A common combing technique that Maximum Ratio Combing (MRC) in decode-and-forward (DF) cognitive relay network has been studied in this paper. The direct links are available and the maximum relay selection is utilized to select the ideal relay for communication in our system, and all channels are Rayleigh fading channels. We present the secrecy outage probability (SOP) for measuring the system performance and observe that the diversity order is \(K+1\) from the asymptotic SOP, where K refers to the number of relays. Simulation results are also provided to inspect the veracity of analytic results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lei, X., Fan, L., Hu, R.Q., Michalopoulos, D.S., Fan, P.: Secure multiuser communications in multiple decode-and-forward relay networks with direct links. In: IEEE Global Communications Conference (GLOBECOM), pp. 3180–3185 (2014)

    Google Scholar 

  2. Yang, Q., Ding, J., Yang, J.: Secrecy outage probability of dual-hop DF cognitive relay networks under interference constraints. In: The 22nd Asia-Pacific Conference on Communications (APCC), pp. 76–80 (2016)

    Google Scholar 

  3. Ding, J., Yang, Q., Yang, J.: Secrecy performance analysis in multi-relay DF cognitive relay networks under interference constraints. In: IEEE International Conference on Communication Systems (ICCS), pp. 1–6 (2016)

    Google Scholar 

  4. Bao, V.N.Q., Trung, N.L., Debbah, M.: Relay selection schemes for dual-hop networks under security constraints with multiple eavesdroppers. IEEE Trans. Wireless Commun. 12, 6076–6085 (2013)

    Google Scholar 

  5. Chen, Z., Chi, Z., Li, Y., Vucetic, B.: Error performance of maximal-ratio combining with transmit antenna selection in flat Nakagami-m fading channels. IEEE Trans. Wireless Commun. 8, 424–431 (2009)

    Google Scholar 

  6. Van, K.H.: Exact outage probability analysis of proactive relay selection in cognitive radio networks with MRC receivers. J. Commun. Netw. 18, 288–298 (2016)

    Google Scholar 

  7. Li, M., Lin, M., Zhu, W., Huang, Y., Wong, K.K., Yu, Q.: Performance analysis of dual-hop MIMO AF relaying networkwith multiple interferences. IEEE Trans. Veh. Technol. 66, 1891–1897 (2017)

    Google Scholar 

  8. Nguyen, B.V., Kim, K.: Secrecy outage probability of optimal relay selection for secure AnF cooperative networks. IEEE Commun. Lett. 19, 2086–2089 (2015)

    Google Scholar 

  9. Yeoh, P.L., Yang, N., Kim, K.J.: Secrecy outage probability of selective relaying wiretap channels with collaborative eavesdropping. In: IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2015)

    Google Scholar 

  10. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 6th edn. Academic Press, San Diego (2000)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support by the National NSF of China under Grant No. 61472343.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiqing Yang .

Editor information

Editors and Affiliations

Appendix

Appendix

Based on \(Z = \frac{I}{{\left( {\rho - 1} \right) {N_{{0_D}}}}}{\left| {{h_D}} \right| ^2} - \frac{{I\rho }}{{\left( {\rho - 1} \right) {N_{{0_E}}}}}{\left| {{h_E}} \right| ^2}\), the CDF of Z is rewritten as

$$\begin{aligned}&{F_Z}\left( z \right) = \Pr \left( {\frac{I}{{\left( {\rho - 1} \right) {N_{{0_D}}}}}{{\left| {{h_D}} \right| }^2} - \frac{{I\rho }}{{\left( {\rho - 1} \right) {N_{{0_E}}}}}{{\left| {{h_E}} \right| }^2} < z} \right) \nonumber \\&= \int _0^\infty {{F_X}\left( {\frac{{\left( {\rho - 1} \right) {N_{{0_D}}}}}{I}z + \frac{{\rho {N_{{0_D}}}}}{{{N_{{0_E}}}}}y} \right) {f_Y}\left( y \right) dy,} \end{aligned}$$
(19)

where \(X = {\left| {{h_D}} \right| ^2}\) and \(Y = {\left| {{h_E}} \right| ^2}\), and we should obtain the CDF of X and the PDF of Y first. According to \({\left| {{h_D}} \right| ^2} = {{{\left| {{h_{SD}}} \right| }^2}+\mathop {\text {max}}\limits _{1 \le k \le K}\eta {{\left| {{h_{{R_k}D}}} \right| }^2}} \), the PDF of X is

$$\begin{aligned}&{F_X}\left( x \right) = \Pr \left( {{{\left| {{h_{SD}}} \right| }^2} + \mathop {\text {max}}\limits _{1kK} \eta {{\left| {{h_{{R_k}D}}} \right| }^2}< x} \right) \nonumber \\&= \Pr \left( {{{\left| {{h_{SD}}} \right| }^2} < x - \mathop {\text {max}}\limits _{1kK} \eta {{\left| {{h_{{R_k}D}}} \right| }^2}} \right) = \int _0^x {{F_{\mathop {\text {max}}\limits _{1kK} \eta {{\left| {{h_{{R_k}D}}} \right| }^2}}}} \left( {x - l} \right) {f_{{{\left| {{h_{SD}}} \right| }^2}}}\left( l \right) dl. \end{aligned}$$
(20)

According to the Rayleigh fading of R-D link, \({{F_{\mathop {\text {max}}\limits _{1kK} \eta {{\left| {{h_{{R_k}D}}} \right| }^2}}}}\) is shown as

$$\begin{aligned} {F_{\mathop {\text {max}}\limits _{1kK} \eta {{\left| {{h_{{R_k}D}}} \right| }^2}}} = {\left( {1 - {e^{ - \frac{x}{{\eta {\mu _1}}}}}} \right) ^K} = \sum \limits _{n = 0}^K {\left( \!\begin{aligned} K \\ n \\ \end{aligned} \right) {{\left( { - 1} \right) }^n}{e^{ - \frac{{nx}}{{\eta {\mu _1}}}}}}. \end{aligned}$$
(21)

Substituting Eq. (21) and \({f_{{{\left| {{h_{SD}}} \right| }^2}}}\left( l \right) = \frac{1}{{{\lambda _1}}}{e^{ - \frac{l}{{{\lambda _1}}}}}\) into Eq. (20), we can obtain \({F_X}\left( x \right) \) as

$$\begin{aligned} {F_X}\left( x \right) = \sum \limits _{n = 0}^K {\left( \begin{aligned} K \\ n \\ \end{aligned} \right) {{\left( { - 1} \right) }^n}\frac{{\frac{1}{{{\lambda _1}}}}}{{\frac{n}{{\eta {\mu _1}}} - \frac{1}{{{\lambda _1}}}}}} \left( {{e^{ - \frac{x}{{{\lambda _1}}}}} - {e^{ - \frac{{nx}}{{\eta {\mu _1}}}}}} \right) . \end{aligned}$$
(22)

The derivation of \({F_Y}\left( y \right) \) is similar to the derivation of \({F_X}\left( x \right) \), and we present the result of \({F_Y}\left( y \right) \) directly

$$\begin{aligned} {F_Y}\left( y \right) = 1 - {e^{ - \frac{y}{{\eta {\mu _2}}}}} - \frac{{\frac{1}{{\eta {\beta _2}}}}}{{\frac{1}{{{\lambda _2}}} - \frac{1}{{\eta {\beta _2}}}}}\left( {{e^{ - \frac{y}{{\eta {\mu _2}}}}} - {e^{ - \frac{y}{{{\lambda _2}}}}}} \right) . \end{aligned}$$
(23)

Thus, the PDF of \({F_Y}\left( y \right) \) is

$$\begin{aligned} {f_Y}\left( y \right) = \frac{{d{F_Y}\left( y \right) }}{{dy}} = \frac{{\frac{1}{{\eta {\lambda _2}{\beta _2}}}}}{{\frac{1}{{{\lambda _2}}} - \frac{1}{{\eta {\beta _2}}}}}\left( {{e^{ - \frac{y}{{\eta {\mu _2}}}}} - {e^{ - \frac{y}{{{\lambda _2}}}}}} \right) . \end{aligned}$$
(24)

Then, substituting Eqs. (22) and (24) into Eq. (19), the CDF of Z is presented as in Corollary 1.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ding, J., Yang, Q., Xie, Y. (2019). Performance Analysis of MRC Technique in DF Cognitive Relay Networks. In: Liang, Q., Mu, J., Jia, M., Wang, W., Feng, X., Zhang, B. (eds) Communications, Signal Processing, and Systems. CSPS 2017. Lecture Notes in Electrical Engineering, vol 463. Springer, Singapore. https://doi.org/10.1007/978-981-10-6571-2_126

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6571-2_126

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6570-5

  • Online ISBN: 978-981-10-6571-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics