Skip to main content

Genome-Wide Assessment of the Binding Effects of Artificial Transcriptional Activators by Utilizing the Power of High-Throughput Sequencing

  • Chapter
  • First Online:
Advancing Development of Synthetic Gene Regulators

Part of the book series: Springer Theses ((Springer Theses))

  • 490 Accesses

Abstract

One of the major goals in DNA-based personalized medicine is the development of sequence-specific small molecules to target the genome by means of synthetic biology; SAHA-PIPs belong to such class of small molecules. In a complex eukaryotic genome, the differential biological effects of SAHA-PIPs remain unclear. These questions can be addressed by directly identifying the binding regions of small molecules across the genome; however, it is a challenge to enrich specifically the small-molecule-bound DNA without chemical cross-linking. Here, we developed a method using high-throughput sequencing to map the binding area of non-cross-linked small molecules throughout the chromatinized human genome. Analysis of the sequenced data confirmed the presence of specific binding sites for SAHA-PIPs among the enriched sequence reads. Mapping the binding sites and enriched regions on the human genome clarifies the origin of the distinctive biological effects of SAHA-PIP. This approach will be useful for identifying the functionality of other small molecules on a large scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 107:861–872. doi:10.1016/j.cell.2007.11.019

    Article  Google Scholar 

  2. Mohn F, Schübeler D (2009) Genetics and epigenetics: stability and plasticity during cellular differentiation. Trends Genet 25:129–136

    Article  CAS  Google Scholar 

  3. Pachaiyappan B, Woster PM (2014) Design of small molecule epigenetic modulators. Bioorg Med Chem Lett 24:21–32

    Article  CAS  Google Scholar 

  4. Arrowsmith CH, Bountra C, Fish PV et al (2012) Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov 11:384–400. doi:10.1038/nrd3674

    Article  CAS  Google Scholar 

  5. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  Google Scholar 

  6. Carlson CD, Warren CL, Hauschild KE et al (2010) Specificity landscapes of DNA binding molecules elucidate biological function. Proc Natl Acad Sci U S A 107:4544–4549. doi:10.1073/pnas.0914023107

    Article  CAS  Google Scholar 

  7. Dervan PB, Edelson BS (2003) Recognition of the DNA minor groove by pyrrole-imidazole polyamides. Curr Opin Struct Biol 13:284–299

    Article  CAS  Google Scholar 

  8. Ohtsuki A, Kimura MT, Minoshima M et al (2009) Synthesis and properties of PI polyamide-SAHA conjugate. Tetrahedron Lett 50:7288–7292. doi:10.1016/j.tetlet.2009.10.034

    Article  CAS  Google Scholar 

  9. Pandian GN, Shinohara KI, Ohtsuki A et al (2011) Synthetic small molecules for epigenetic activation of pluripotency genes in mouse embryonic fibroblasts. ChemBioChem 12:2822–2828. doi:10.1002/cbic.201100597

    Article  CAS  Google Scholar 

  10. Pandian GN, Ohtsuki A, Bando T et al (2012) Development of programmable small DNA-binding molecules with epigenetic activity for induction of core pluripotency genes. Bioorg Med Chem 20:2656–2660. doi:10.1016/j.bmc.2012.02.032

    Article  CAS  Google Scholar 

  11. Pandian GN, Nakano Y, Sato S et al (2012) A synthetic small molecule for rapid induction of multiple pluripotency genes in mouse embryonic fibroblasts. Sci Rep 2:1–8. doi:10.1038/srep00544

    Article  Google Scholar 

  12. Anandhakumar C, Li Y, Kizaki S et al (2014) Next-generation sequencing studies guide the design of pyrrole-imidazole polyamides with improved binding specificity by the addition of β-alanine. ChemBioChem 15:2647–2651. doi:10.1002/cbic.201402497

    Article  CAS  Google Scholar 

  13. Pandian GN, Taniguchi J, Junetha S et al (2014) Distinct DNA-based epigenetic switches trigger transcriptional activation of silent genes in human dermal fibroblasts. Sci Rep 4:3843. doi:10.1038/srep03843

    Article  Google Scholar 

  14. Jespersen C, Soragni E, James Chou C et al (2012) Chromatin structure determines accessibility of a hairpin polyamide-chlorambucil conjugate at histone H4 genes in pancreatic cancer cells. Bioorg Med Chem Lett 22:4068–4071. doi:10.1016/j.bmcl.2012.04.090

    Article  CAS  Google Scholar 

  15. Erwin GS, Bhimsaria D, Eguchi A, Ansari AZ (2014) Mapping polyamide-DNA interactions in human cells reveals a new design strategy for effective targeting of genomic sites. Angew Chem Int Ed 53:10124–10128. doi:10.1002/anie.201405497

    Article  CAS  Google Scholar 

  16. Chandran A, Syed J, Taylor RD et al (2016) Deciphering the genomic targets of alkylating polyamide conjugates using high-throughput sequencing. Nucleic Acids Res 44:4014–4024. doi:10.1093/nar/gkw283

    Article  CAS  Google Scholar 

  17. Pandian GN, Sato S, Anandhakumar C et al (2014) Identification of a small molecule that turn ‘ON’ the pluripotency gene circuitry in human fibroblasts. ACS Chem Biol 141024155048006. doi:10.1021/cb500724t

  18. Han L, Pandian GN, Junetha S et al (2013) A synthetic small molecule for targeted transcriptional activation of germ cell genes in a human somatic cell. Angew Chem Int Ed 52:13410–13413

    Article  CAS  Google Scholar 

  19. Published in association with Cold Spring Harbor Laboratory Press (2005) Micrococcal nuclease–Southern blot assay. Nat Methods 2:719–720

    Google Scholar 

  20. Zykovich A, Korf I, Segal DJ (2009) Bind-n-Seq: high-throughput analysis of in vitro protein-DNA interactions using massively parallel sequencing. Nucleic Acids Res 37:e151. doi:10.1093/nar/gkp802

    Article  Google Scholar 

  21. Bailey TL (2011) DREME: motif discovery in transcription factor ChIP-seq data. Bioinformatics 27:1653–1659. doi:10.1093/bioinformatics/btr261

    Article  CAS  Google Scholar 

  22. Workman CT, Yin Y, Corcoran DL et al (2005) enoLOGOS: a versatile web tool for energy normalized sequence logos. Nucleic Acids Res. doi:10.1093/nar/gki439

    Google Scholar 

  23. Feng J, Liu T, Qin B et al (2012) Identifying ChIP-seq enrichment using MACS. Nat Protoc 7:1728–1740. doi:10.1038/nprot.2012.101

    Article  CAS  Google Scholar 

  24. Kent WJ, Sugnet CW, Furey TS et al (2002) The human genome browser at UCSC. Genome Res 12:996–1006. doi:10.1101/gr.229102

    Article  CAS  Google Scholar 

  25. Karolchik D, Barber GP, Casper J et al (2014) The UCSC genome browser database: 2014 update. Nucleic Acids Res. doi:10.1093/nar/gkt1168

    Google Scholar 

  26. Rosenbloom KR, Armstrong J, Barber GP et al (2015) The UCSC genome browser database: 2015 update. Nucleic Acids Res 43:D670–D681. doi:10.1093/nar/gku1177

    Article  CAS  Google Scholar 

  27. Consortium EP, Dunham I, Kundaje A et al (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74. doi:10.1038/nature11247

  28. Ernst J, Kheradpour P, Mikkelsen TS et al (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473:43–49. doi:10.1038/nature09906

    Article  CAS  Google Scholar 

  29. Grewal SIS, Rice JC (2004) Regulation of heterochromatin by histone methylation and small RNAs. Curr Opin Cell Biol 16:230–238

    Article  CAS  Google Scholar 

  30. Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6:838–849. doi:10.1038/nrm1761

    Article  CAS  Google Scholar 

  31. Peters AHFM, Kubicek S, Mechtler K et al (2003) Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell 12:1577–1589. doi:10.1016/S1097-2765(03)00477-5

    Article  CAS  Google Scholar 

  32. Santenard A, Ziegler-Birling C, Koch M et al (2010) Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3. Nat Cell Biol 12:853–862. doi:10.1038/ncb2089

    Article  CAS  Google Scholar 

  33. Anandhakumar C, Kizaki S, Bando T et al (2015) Advancing small-molecule-based chemical biology with next-generation sequencing technologies. ChemBioChem 16:20–38

    Article  CAS  Google Scholar 

  34. Rodriguez R, Miller KM (2014) Unravelling the genomic targets of small molecules using high-throughput sequencing. Nat Rev Genet 15:783–796

    Article  CAS  Google Scholar 

  35. Anders L, Guenther MG, Qi J et al (2014) Genome-wide localization of small molecules. Nat Biotechnol 32:92–96. doi:10.1038/nbt.2776

    Article  CAS  Google Scholar 

  36. Jin C, Yang L, Xie M et al (2014) Chem-seq permits identification of genomic targets of drugs against androgen receptor regulation selected by functional phenotypic screens. Proc Natl Acad Sci U S A 111:9235–9240. doi:10.1073/pnas.1404303111

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anandhakumar Chandran .

Appendix

Appendix

Extended Fig. 3.1.

Extended Fig. 3.1
figure 5figure 5

Identified genomic regions of PIP conjugates 3 and 4 binding and enrichment in a DPPA4 b EPCAM c PIWIL2 d TDRD9 e GAPDH

Extended Fig. 3.2.

Extended Fig. 3.2
figure 6

Comparison of genomic binding and enriched region with binding rule based binding site. a For compound 3. b For compound 4

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Chandran, A. (2018). Genome-Wide Assessment of the Binding Effects of Artificial Transcriptional Activators by Utilizing the Power of High-Throughput Sequencing. In: Advancing Development of Synthetic Gene Regulators. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-6547-7_3

Download citation

Publish with us

Policies and ethics