Skip to main content

Introduction to Wireless Power Transfer

  • Chapter
  • First Online:

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter, an introduction to Wireless Power Transfer (WPT) technology is provided for overview of this technology, including its background, history, category, and application. Based on magnetically coupled WPT technology, the basic structures and theories are illustrated, followed by the current research focus. Finally, the contents of the thesis are displayed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wireless power: mobile devices, consumer electronics, wireless power infrastructure, and wireless charging of electric vehicles: global market analysis and forecasts. Research N. https://www.navigantresearch.com/research/wireless-power. Accessed 26 Aug 2017

  2. The top 10 emerging technologies for 2012. Forum W E. https://www.weforum.org/agenda/2012/02/the-2012-top-10-emerging-technologies/. Accessed 26 Aug 2017

  3. The top 10 emerging technologies for 2013. Forum W E. https://www.weforum.org/agenda/2013/02/top-10-emerging-technologies-for-2013/. Accessed 26 Aug 2017

  4. 10 breakthrough technologies 2016. Review M T. https://www.technologyreview.com/lists/technologies/2016/#/set/id/600869/. Accessed 26 Aug 2017

  5. Wardenclyffe tower. Wikipedia. https://en.wikipedia.org/wiki/Wardenclyffe_Tower. Accessed 26 Aug 2017

  6. Hui SYR, Zhong W, Lee CK (2014) A critical review of recent progress in mid-range wireless power transfer. IEEE Trans Power Electron 29:4500–4511

    Article  Google Scholar 

  7. Brown WC (1984) The history of power transmission by radio waves. IEEE Trans Microw Theory Techn 32:1230–1242

    Article  Google Scholar 

  8. Glaser P (1968) Power from the sun: its future. Science 162:857–861

    Article  Google Scholar 

  9. Huang C, Boys JT, Covic GA, Budhia M (2009) Practical considerations for designing IPT system for EV battery charging. In: IEEE vehicle power and propulsion conference, pp 402–407

    Google Scholar 

  10. Boys JT, Covic GA, Green AW (2000) Stability and control of inductively coupled power transfer systems. IEE Proc Electric Power Appl 147:37–43

    Article  Google Scholar 

  11. Green AW, Boys JT (1994) 10 kHz inductively coupled power transfer—concept and control. In: International conference on power electronics and variable-speed drives, pp 694–699

    Google Scholar 

  12. Covic GA, Boys JT (2013) Modern trends in inductive power transfer for transportation applications. IEEE J Emerg Sel Topics Power Electron 1:28–41

    Article  Google Scholar 

  13. Boys JT, Covic GA (2015) The inductive power transfer story at the University of Auckland. IEEE Circuits Syst Mag 15:6–27

    Article  Google Scholar 

  14. Kurs A, Karalis A, Moffatt R, Joannopoulos JD, Fisher P, Soljacic M (2007) Wireless power transfer via strongly coupled magnetic resonances. Science 317:83–86

    Article  MathSciNet  Google Scholar 

  15. Magne charge. Wikipedia. https://en.wikipedia.org/wiki/Magne_Charge. Accessed 26 Aug 2017

  16. Luo B, Wu S, Zhou N (2014) Flexible design method for multi-repeater wireless power transfer system based on coupled resonator bandpass filter model. IEEE Trans Circuits Syst I Reg Papers 61:3288–3297

    Article  Google Scholar 

  17. Sun S, Xu D, Liu QS, Lin F (2012) From filter to mid-range wireless power transfer system. In: IEEE international symposium on radio-frequency integration technology (RFIT), pp 125–127

    Google Scholar 

  18. Koh KE, Beh TC, Imura T, Hori Y (2012) Novel band-pass filter model for multi-receiver wireless power transfer via magnetic resonance coupling and power division. In: IEEE annual wireless and microwave technology conference, pp 1–6

    Google Scholar 

  19. Wang Z, Li Y, Sun Y, Tang C, Lv X (2013) Load detection model of voltage-fed inductive power transfer system. IEEE Trans Power Electron 28:5233–5243

    Article  Google Scholar 

  20. Bosshard R, Kolar JW, Muhlethaler J, Stevanovic I, Wunsch B, Canales F (2015) Modeling and eta-alpha-pareto optimization of inductive power transfer coils for electric vehicles. IEEE J Emerg Sel Topics Power Electron 3:50–64

    Article  Google Scholar 

  21. Li S, Li W, Deng J, Nguyen TD, Mi C (2015) A double-sided LCC compensation network and its tuning method for wireless power transfer. IEEE Trans Veh Technol 64:2261–2273

    Article  Google Scholar 

  22. Qu X, Jing Y, Han H, Wong S, Tse CK (2017) Higher order compensation for inductive-power-transfer converters with constant-voltage or constant-current output combating transformer parameter constraints. IEEE Trans Power Electron 32:394–405

    Article  Google Scholar 

  23. Guo Y, Wang L, Tao C, Liao C, Zhu Q (2014) Analysis of power factor correction circuit for EV wireless charging system. In: IEEE conference and expo transportation electrification Asia-Pacific (ITEC Asia-Pacific), pp 1–5

    Google Scholar 

  24. Yang JR, Kim J, Park YJ (2014) Class e power amplifiers using high-q inductors for loosely coupled wireless power transfer system. J Electr Eng Technol 9:569–575

    Article  Google Scholar 

  25. Aldhaher S, Luk PC, Drissi KEK, Whidborne JF (2015) High-input-voltage high-frequency class E rectifiers for resonant inductive links. IEEE Trans Power Electron 30:1328–1335

    Article  Google Scholar 

  26. Liu M, Fu M, Ma C (2015) A compact class E rectifier for megahertz wireless power transfer. In: IEEE PELS workshop on emerging technologies: wireless power (WoW), pp 1–5

    Google Scholar 

  27. Aldhaher S, Luk PC, Whidborne JF (2014) Tuning class E inverters applied in inductive links using saturable reactors. IEEE Trans Power Electron 29:2969–2978

    Article  Google Scholar 

  28. Hao LL, Hu AP, Covic GA (2012) A direct ac-ac converter for inductive power-transfer systems. IEEE Trans Power Electron 27:661–668

    Article  Google Scholar 

  29. Li HL, Hu AP, Covic GA (2010) Current fluctuation analysis of a quantum ac-ac resonant converter for contactless power transfer. In: IEEE energy conversion congress and exposition (ECCE), pp 1838–1843

    Google Scholar 

  30. Bac NX, Vilathgamuwa DM, Madawala UK (2014) A sic-based matrix converter topology for inductive power transfer system. IEEE Trans Power Electron 29:4029–4038

    Article  Google Scholar 

  31. Bosshard R, Kolar JW (2017) All-sic 9.5 kw/dm3 on-board power electronics for 50 kw/85 kHz automotive IPT system. IEEE J Emerg Sel Topics Power Electron 5:419–431

    Article  Google Scholar 

  32. Onar OC, Campbell S, Ning P, Miller JM, Liang Z (2013) Fabrication and evaluation of a high performance sic inverter for wireless power transfer applications. In: IEEE workshop on wide bandgap power devices and applications (WiPDA), pp 125–130

    Google Scholar 

  33. Zeng H, Peng FZ (2017) Sic-based Z-source resonant converter with constant frequency and load regulation for EV wireless charger. IEEE Trans Power Electron 32:8813–8822

    Article  Google Scholar 

  34. Cai A, Pereira A, Tanzania R, Yen KT, Siek L (2015) A high frequency, high efficiency GaN HEFT based inductive power transfer system. In: IEEE applied power electronics conference and exposition (APEC), pp 3094–3100

    Google Scholar 

  35. Florian C, Mastri F, Paganelli RP, Masotti D, Costanzo A (2014) Theoretical and numerical design of a wireless power transmission link with GaN-based transmitter and adaptive receiver. IEEE Trans Microw Theory Technol 62:931–946

    Article  Google Scholar 

  36. Sohn YH, Choi BH, Lee ES, Lim GC, Cho G, Rim CT (2015) General unified analyses of two-capacitor inductive power transfer systems: equivalence of current-source SS and SP compensations. IEEE Trans Power Electron 30:6030–6045

    Article  Google Scholar 

  37. Zhang Y, Zhao Z, Chen K, Fan J (2017) Load characteristics of wireless power transfer system with different resonant types and resonator numbers. AIP Adv 7:56601

    Article  Google Scholar 

  38. Su Y, Tang C, Wu S, Sun Y (2006) Research of LCL resonant inverter in wireless power transfer system. In: International conference on power system technology (PowerCon), pp 1–6

    Google Scholar 

  39. Kissin M, Huang C, Covic GA, Boys JT (2009) Detection of the tuned point of a fixed-frequency LCL resonant power supply. IEEE Trans Power Electron 24:1140–1143

    Article  Google Scholar 

  40. Zhu Q, Wang L, Guo Y, Liao C, Li F (2016) Applying LCC compensation network to dynamic wireless EV charging system. IEEE Trans Ind Electron 63:6557–6567

    Article  Google Scholar 

  41. Kan T, Nguyen T, White JC, Malhan RK, Mi CC (2017) A new integration method for an electric vehicle wireless charging system using LCC compensation topology: analysis and design. IEEE Trans Power Electron 32:1638–1650

    Article  Google Scholar 

  42. Zhang W, Mi CC (2016) Compensation topologies of high-power wireless power transfer systems. IEEE Trans Veh Technol 65:4768–4778

    Article  Google Scholar 

  43. Kim DW, Chung YD, Kang HK, Yoon YS, Ko TK (2012) Characteristics of contactless power transfer for hts coil based on electromagnetic resonance coupling. IEEE Trans Appl Supercond 22:5400604

    Article  Google Scholar 

  44. Chen XY, Jin JX (2011) Resonant circuit and magnetic field analysis of superconducting contactless power transfer. In: International conference on applied superconductivity and electromagnetic devices, pp 5–8

    Google Scholar 

  45. Mizuno T, Yachi S, Kamiya A, Yamamoto D (2011) Improvement in efficiency of wireless power transfer of magnetic resonant coupling using magnetoplated wire. IEEE Trans Magn 47:4445–4448

    Article  Google Scholar 

  46. Kim C, Lee B (2011) Analysis of wireless power transmission between metamaterial-inspired loops. In: Asia-Pacific microwave conference proceedings (APMC), pp 94–97

    Google Scholar 

  47. Wang B, Teo KH, Nishino T, Yerazunis W, Barnwell J, Zhang J (2011) Experiments on wireless power transfer with metamaterials. Appl Phys Lett 98:254101

    Article  Google Scholar 

  48. Urzhumov Y, Smith DR (2011) Metamaterial-enhanced coupling between magnetic dipoles for efficient wireless power transfer. Phys Rev B 83:205114

    Article  Google Scholar 

  49. Budhia M, Boys JT, Covic GA, Huang CY (2013) Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems. IEEE Trans Ind Electron 60:318–328

    Article  Google Scholar 

  50. Nguyen T, Li S, Li W, Mi C (2014) Feasibility study on bipolar pads for efficient wireless power chargers. In: Annual IEEE applied power electronics conference and exposition (APEC), pp 1676–1682

    Google Scholar 

  51. Zaheer A, Hao H, Covic GA, Kacprzak D (2015) Investigation of multiple decoupled coil primary pad topologies in lumped IPT systems for interoperable electric vehicle charging. IEEE Trans Power Electron 30:1937–1955

    Article  Google Scholar 

  52. Haldi R, Schenk K, Nam I, Santi E (2013) Finite-element-simulation-assisted optimized design of an asymmetrical high-power inductive coupler with a large air gap for EV charging. In: IEEE energy conversion congress and exposition (ECCE), pp 3635–3642

    Google Scholar 

  53. Zhang Y, Lu T, Zhao Z (2014) Reducing the impact of source internal resistance by source coil in resonant wireless power transfer. In: IEEE energy conversion congress and exposition (ECCE), pp 845–850

    Google Scholar 

  54. Zhong W, Zhang C, Liu X, Hui SYR (2014) A methodology for making a 3-coil wireless power transfer system more energy efficient than a 2-coil counterpart for extended transfer distance. IEEE Trans Power Electron 30:933–942

    Article  Google Scholar 

  55. Zhong WX, Liu X, Hui SYR (2011) A novel single-layer winding array and receiver coil structure for contactless battery charging systems with free-positioning and localized charging features. IEEE Trans Ind Electron 58:4136–4144

    Article  Google Scholar 

  56. Xu Q, Wang H, Gao Z, Mao Z, He J, Sun M (2013) A novel mat-based system for position-varying wireless power transfer to biomedical implants. IEEE Trans Magn 49:4774–4779

    Article  Google Scholar 

  57. Johari R, Krogmeier JV, Love DJ (2014) Analysis and practical considerations in implementing multiple transmitters for wireless power transfer via coupled magnetic resonance. IEEE Trans Ind Electron 61:1774–1783

    Article  Google Scholar 

  58. Swain AK, Devarakonda S, Madawala U K (2012) Modelling of multi-pick-up bi-directional inductive power transfer systems. In: International conference on sustainable energy technologies (ICSET), pp 30–35

    Google Scholar 

  59. Fu M, Zhang T, Ma C, Zhu X (2015) Efficiency and optimal loads analysis for multiple-receiver wireless power transfer systems. IEEE Trans Microw Theory Techn 63:801–812

    Article  Google Scholar 

  60. Yin J, Lin D, Lee CK, Hui SYR (2014) Monitoring of multiple loads in wireless power transfer systems without direct output feedback. In: Annual IEEE applied power electronics conference and exposition (APEC), pp 1165–1170

    Google Scholar 

  61. Ahn D, Hong S (2013) Effect of coupling between multiple transmitters or multiple receivers on wireless power transfer. IEEE Trans Ind Electron 60:2602–2613

    Article  Google Scholar 

  62. Lee CK, Zhong WX, Hui SYR (2012) Effects of magnetic coupling of nonadjacent resonators on wireless power domino-resonator systems. IEEE Trans Power Electron 27:1905–1916

    Article  Google Scholar 

  63. Zhong WX, Chi KL, Hui SY (2012) Wireless power domino-resonator systems with noncoaxial axes and circular structures. IEEE Trans Power Electron 27:4750–4762

    Article  Google Scholar 

  64. Sample AP, Meyer DA, Smith JR (2011) Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans Ind Electron 58:544–554

    Article  Google Scholar 

  65. Hirayama H, Ozawa T, Hiraiwa Y, Kikuma N, Sakakibara K (2009) A consideration of electro-magnetic-resonant coupling mode in wireless power transmission. IEICE Electron Express 6:1421–1425

    Article  Google Scholar 

  66. Kong S, Kim M, Koo K, Ahn S, Bae B, Kim J (2011) Analytical expressions for maximum transferred power in wireless power transfer systems. In: IEEE international symposium on electromagnetic compatibility, pp 379–383

    Google Scholar 

  67. Duong TP, Lee J (2011) Experimental results of high-efficiency resonant coupling wireless power transfer using a variable coupling method. IEEE Microw Compon Lett 21:442–444

    Article  Google Scholar 

  68. Fu WZ, Zhang B, Qiu DY (2009) Study on frequency-tracking wireless power transfer system by resonant coupling. In: IEEE international power electronics and motion control conference, pp 2658–2663

    Google Scholar 

  69. Park J, Tak Y, Kim Y, Kim Y, Nam S (2011) Investigation of adaptive matching methods for near-field wireless power transfer. IEEE Trans Antennas Propag 59:1769–1773

    Article  Google Scholar 

  70. Nakadachi S, Mochizuki S, Sakaino S, Kaneko Y, Abe S, Yasuda T (2013) Bidirectional contactless power transfer system expandable from unidirectional system. In: IEEE energy conversion congress and exposition (ECCE), pp 3651–3657

    Google Scholar 

  71. Tang C, Dai X, Wang Z, Su Y, Sun Y (2012) A bidirectional contactless power transfer system with dual-side power flow control. In: IEEE international conference on power system technology (POWERCON), pp 1–6

    Google Scholar 

  72. Bac XN, Vilathgamuwa DM, Foo GHB, Peng W, Ong A, Madawala UK et al (2015) An efficiency optimization scheme for bidirectional inductive power transfer systems. IEEE Trans Power Electron 30:6310–6319

    Article  Google Scholar 

  73. Thrimawithana DJ, Madawala UK (2013) A generalized steady-state model for bidirectional ipt systems. IEEE Trans Power Electron 28:4681–4689

    Article  Google Scholar 

  74. Li H, Wang K, Huang L, Chen W, Yang X (2015) Dynamic modeling based on coupled modes for wireless power transfer systems. IEEE Trans Power Electron 30:6245–6253

    Article  Google Scholar 

  75. Hu AP (2009) Modeling a contactless power supply using GSSA method. In: IEEE ICIT, pp 1–6

    Google Scholar 

  76. Zahid ZU, Dalala Z, Lai J (2014) Small-signal modeling of series-series compensated induction power transfer system. In: IEEE APEC, pp 2847–2853

    Google Scholar 

  77. Gunji D, Imura T, Fujimoto H (2015) Envelope model of load voltage on series-series compensated wireless power transfer via magnetic resonance coupling. In: IEEE PELS workshop on emerging technologies: wireless power (WoW), pp 1–6

    Google Scholar 

  78. Madawala UK, Neath M, Thrimawithana DJ (2013) A power—frequency controller for bidirectional inductive power transfer systems. IEEE Trans Ind Electron 60:310–317

    Article  Google Scholar 

  79. Si P, Hu AP, Malpas S, Budgett D (2008) A frequency control method for regulating wireless power to implantable devices. IEEE Trans Biomed Circuits Syst 2:22–29

    Article  Google Scholar 

  80. Zhao C, Wang Z, Du J, Wu J, Zong S, He X (2014) Active resonance wireless power transfer system using phase shift control strategy. In: Annual IEEE applied power electronics conference and exposition (APEC), pp 1336–1341

    Google Scholar 

  81. Wang G, Liu W, Sivaprakasam M, Zhou M, Weiland JD, Humayun MS (2005) A wireless phase shift keying transmitter with Q-independent phase transition time. In: Annual international conference of the engineering in medicine and biology society (IEEE-EMBS), pp 5238–5241

    Google Scholar 

  82. Bosshard R, Badstubner U, Kolar JW, Stevanovic I (2012) Comparative evaluation of control methods for inductive power transfer. In: International conference on renewable energy research and applications (ICRERA), pp 1–6

    Google Scholar 

  83. Choi SY, Gu BW, Jeong SY, Rim CT (2015) Advances in wireless power transfer systems for roadway-powered electric vehicles. IEEE J Emerg Sel Topics Power Electron 3:18–36

    Article  Google Scholar 

  84. Mi CC, Buja G, Choi SY, Rim CT (2016) Modern advances in wireless power transfer systems for roadway powered electric vehicles. IEEE Trans Ind Electron 63:6533–6545

    Article  Google Scholar 

  85. Hao H, Covic GA, Boys JT (2014) An approximate dynamic model of LCL-T-based inductive power transfer power supplies. IEEE Trans Power Electron 29:5554–5567

    Article  Google Scholar 

  86. Feng H, Cai T, Duan S, Zhao J, Zhang X, Chen C (2016) An LCC-compensated resonant converter optimized for robust reaction to large coupling variation in dynamic wireless power transfer. IEEE Trans Ind Electron 63:6591–6601

    Article  Google Scholar 

  87. Cao Y, Dang Z, Qahouq JAA, Phillips E (2016) Dynamic efficiency tracking controller for reconfigurable four-coil wireless power transfer system. In: IEEE applied power electronics conference and exposition (APEC), pp 3684–3689

    Google Scholar 

  88. Huang L, Li Y, He Z, Gao S, Yu J (2015) Improved robust controller design for dynamic IPT system under mutual-inductance uncertainty. In: IEEE PELS workshop on emerging technologies: wireless power (WoW), pp 1–6

    Google Scholar 

  89. Yu X, Sandhu S, Beiker S, Sassoon R, Fan S (2011) Wireless energy transfer with the presence of metallic planes. Appl Phys Lett 99:214102

    Article  Google Scholar 

  90. Wiengarten R, Reising V, Vosshagen T, Turki F (2015) About the heating of foreign metallic objects in magnetic field of wireless power transfer by cars. In: PCIM Europe, pp 1595–1599

    Google Scholar 

  91. Kuyvenhoven N, Dean C, Melton J, Schwannecke J, Umenei A E (2011) Development of a foreign object detection and analysis method for wireless power systems. In: IEEE symposium on product compliance engineering (PSES), pp 1–6

    Google Scholar 

  92. Sonapreetha MR, Jeong SY, Choi SY, Rim CT (2015) Dual-purpose non-overlapped coil sets as foreign object and vehicle location detections for wireless stationary EV chargers. In: IEEE PELS workshop on emerging technologies: wireless power (WoW), pp 1–7

    Google Scholar 

  93. Liu L, Zhang R, Chua K (2013) Wireless information and power transfer: a dynamic power splitting approach. IEEE Trans Commun 61:3990–4001

    Article  Google Scholar 

  94. Bieler T, Perrottet M, Nguyen V, Perriard Y (2002) Contactless power and information transmission. IEEE Trans Ind Appl 38:1266–1272

    Article  Google Scholar 

  95. Huang K, Larsson E (2013) Simultaneous information and power transfer for broadband wireless systems. IEEE Trans Signal Process 61:5972–5986

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiming Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Y. (2018). Introduction to Wireless Power Transfer. In: Key Technologies of Magnetically-Coupled Resonant Wireless Power Transfer. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-6538-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6538-5_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6537-8

  • Online ISBN: 978-981-10-6538-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics