Skip to main content

Acceleration of Particle Based Fluid Simulation with Adhesion Boundary Conditions Using GPU

  • Conference paper
  • First Online:
Modeling, Design and Simulation of Systems (AsiaSim 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 752))

Included in the following conference series:

  • 1788 Accesses

Abstract

We present adhesion boundary conditions for smoothed particle hydrodynamics (SPH) with implicit surfaces. An existing method called ghost SPH addresses adhesion boundary conditions and produces plausible liquid animations using ghost particles. The generation of ghost particles, however, takes considerable computation time when it is implemented on graphics processing units (GPUs). The purpose of this paper is to accelerate ghost SPH using GPUs. In order to accelerate the processing of adhesion boundary conditions, we propose a new boundary model that can skip the ghost particle generation process in air and solid objects. The proposed technique is not just efficient but also inherits other advantages of implicit surfaces such as smoothness. Our test results show that the proposed method efficiently produces natural fluid adhesion motion without air or solid particles and achieves more than a hundredfold speed up compared to ghost SPH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Monaghan, J.J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68(8), 1703–1759 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Schechter, H., Bridson, R.: Ghost SPH for animating water. ACM Trans. Graph. 31(4), 61:1–61:8 (2012)

    Article  Google Scholar 

  3. Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 154–159 (2003)

    Google Scholar 

  4. Monaghan, J.J.: Simulating free surface flows with SPH. J. Comput. Phys. 110(2), 399–406 (1994)

    Article  MATH  Google Scholar 

  5. Becker, M., Teschner, M.: Weakly compressible SPH for free surface flows. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 209–217 (2007)

    Google Scholar 

  6. Solenthaler, B., Pajarola, R.: Predictive-corrective incompressible SPH. ACM Trans. Graph. 28(3), 40:1–40:6 (2009)

    Article  Google Scholar 

  7. Ihmsen, M., Cornelis, J., Solenthaler, B., Horvath, C., Teschner, M.: Implicit incompressible SPH. IEEE Trans. Vis. Comput. Graph. 20(3), 426–435 (2014)

    Article  Google Scholar 

  8. Bender, J., Koschier, D.: Divergence-free smoothed particle hydrodynamics. In: Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 147–155 (2015)

    Google Scholar 

  9. Koshizuka, S., Oka, Y.: Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl. Sci. Eng. 123(3), 421–434 (1996)

    Article  Google Scholar 

  10. Macklin, M., Müller, M.: Position based fluids. ACM Trans. Graph. 32(4), 104:1–104:12 (2013)

    Article  MATH  Google Scholar 

  11. Köster, M., Krüger, A.: Adaptive position-based fluids: improving performance of fluid simulations for real-time applications. Int. J. Comput. Graph. Animation 6(3) (2016)

    Google Scholar 

  12. Cook, R.L.: Stochastic sampling in computer graphics. ACM Trans. Graph. 5(1), 51–72 (1986)

    Article  Google Scholar 

  13. Bridson, R.: Fast Poisson disk sampling in arbitrary dimensions. In: ACM SIGGRAPH 2007 Sketches, vol. 22, p. 1 (2007)

    Google Scholar 

  14. Ebeida, M.S., Mitchell, S.A., Patney, A., Davidson, A.A., Owens, J.D.: A simple algorithm for maximal Poisson-disk sampling in high dimensions. Comput. Graph. Forum 31(2pt4), 785–794 (2012)

    Article  Google Scholar 

  15. Ip, C.Y., Yalçin, M.A., Luebke, D., Varshney, A.: PixelPie: maximal Poisson-disk sampling with rasterization. In: Proceedings of the 5th High-Performance Graphics Conference, pp. 17–26 (2013)

    Google Scholar 

  16. He, X., Wang, H., Zhang, F., Wang, H., Wang, G., Zhou, K.: Robust simulation of sparsely sampled thin features in SPH-based free surface flows. ACM Trans. Graph. 34(1), 7:1–7:9 (2014)

    Article  Google Scholar 

  17. Akinci, N., Akinci, G., Teschner, M.: Versatile surface tension and adhesion for SPH fluids. ACM Trans. Graph. 32(6), 182:1–182:8 (2013)

    Article  Google Scholar 

  18. Berger, M., Levine, J.A., Nonato, L.G., Taubin, G., Silva, C.T.: A benchmark for surface reconstruction. ACM Trans. Graph. 32(2), 20:1–20:17 (2013)

    Article  MATH  Google Scholar 

  19. Reiner, T., Mückl, G., Dachsbacher, C.: Interactive modeling of implicit surfaces using a direct visualization approach with signed distance functions. Comput. Graph. 35(3), 596–603 (2011)

    Article  Google Scholar 

  20. Schmidt, R., Wyvill, B., Sousa, M.C., Jorge, J.A.: ShapeShop: sketch-based solid modeling with BlobTrees. In: ACM SIGGRAPH 2006 Courses, pp. 14:1–14:10 (2006)

    Google Scholar 

  21. Kazhdan, M., Hoppe, H.: Screened Poisson surface reconstruction. ACM Trans. Graph. 32(3), 29:1–29:13 (2013)

    Article  MATH  Google Scholar 

  22. Zagorchev, L.G., Goshtasby, A.A.: A curvature-adaptive implicit surface reconstruction for irregularly spaced points. IEEE Trans. Vis. Comput. Graph. 18(9), 1460–1473 (2012)

    Article  Google Scholar 

  23. Nakata, S., Sakamoto, Y.: Particle-based parallel fluid simulation in three-dimensional scene with implicit surfaces. J. Supercomput. 71(5), 1766–1775 (2015)

    Article  Google Scholar 

  24. Hoetzlein, R.C.: Fast fixed-radius nearest neighbors: interactive million-particle fluids. In: GPU Technology Conference (GTC) 2014 (2014)

    Google Scholar 

  25. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM National Conference, pp. 517–524 (1968)

    Google Scholar 

Download references

Acknowledgement

This work was supported by JSPS KAKENHI Grant Number JP00351320.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasutomo Kanetsuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Kanetsuki, Y., Nakata, S. (2017). Acceleration of Particle Based Fluid Simulation with Adhesion Boundary Conditions Using GPU. In: Mohamed Ali, M., Wahid, H., Mohd Subha, N., Sahlan, S., Md. Yunus, M., Wahap, A. (eds) Modeling, Design and Simulation of Systems. AsiaSim 2017. Communications in Computer and Information Science, vol 752. Springer, Singapore. https://doi.org/10.1007/978-981-10-6502-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6502-6_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6501-9

  • Online ISBN: 978-981-10-6502-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics