Skip to main content

Adaptive Tracking Control of a Single-Link Flexible Robotic Manipulator System with Unmodeled Dynamics and Motion Constraint

  • Conference paper
  • First Online:
Proceedings of 2017 Chinese Intelligent Systems Conference (CISC 2017)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 460))

Included in the following conference series:

  • 1159 Accesses

Abstract

This paper studies the tracking control problem of a single-link flexible robotic manipulator system with unmodeled dynamics and motion constraint. A dynamic surface control scheme is proposed to design the adaptive controller ensuring both desired tracking performance and constraint satisfaction. A virtual state observer is constructed to estimate the unmeasured state signals. The RBF NNs are used to approximate unknown functions. Dynamic signal and nonlinear mapping are introduced to deal with the dynamic uncertainties and solve motion constraint problem, respectively. A simulation study is presented to verify the effectiveness of the proposed control approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bedrossian NS, Spong MW. Feedback linearization of robot manipulators and riemannian curvature. J Robot Syst. 1995;12(8):541–52.

    Article  MATH  Google Scholar 

  2. Rodriguez H, Astolfi A, Ortega R. On the construction of static stabilizers and static output trackers for dynamically linearizable systems, related results and applications. Int J Control. 2006;79:1523–37.

    Article  MathSciNet  MATH  Google Scholar 

  3. Pukdeboon C. Lyapunov optimizing sliding mode control for robot manipulators. Appl Math Sci. 2013;7(63):3123–39.

    MathSciNet  Google Scholar 

  4. Bang JS, Shim H, Park SK, Seo JH. Robust Tracking and vibration suppression for a two-inertia system by combining backstepping approach with disturbance observer. IEEE Trans Ind Electron. 2010;57:3197–206.

    Article  Google Scholar 

  5. Luca AD, Siciliano B, Zollo L. PD control with on-line gravity compensation for robots with elastic joints: theory and experiments. Automatica. 2005;41:1809–19.

    Article  MathSciNet  MATH  Google Scholar 

  6. Chang YC, Chen BS, Lee TC. Tracking control of flexible joint manipulators using only position measurements. Int J Control. 1996;64:567–93.

    Article  MathSciNet  MATH  Google Scholar 

  7. Lightcap CA, Banks SA. An extended Kalman filter for real-time estimation and control of a rigid-link flexible-joint manipulator. IEEE Trans Control Syst Technol. 2010;18:91–103.

    Article  Google Scholar 

  8. Kristic M, Kanellakopoulos I, Kokotovic PV. Nonlinear and adaptive control design. New York: Wiley; 1995.

    Google Scholar 

  9. Kim MS, Lee JS. Adaptive tracking control of flexible-joint manipulators without over parametrization. J Robot Sys. 2004;21:369–79.

    Article  MATH  Google Scholar 

  10. Li YM, Tong SC, Li TS. Adaptive fuzzy output feedback control for a single-link flexible robot manipulator driven DC motor via backstepping. Nonlinear Anal: Real World Appl. 2013;14:483–94.

    Article  MathSciNet  MATH  Google Scholar 

  11. Chang YC, Yen HM. Robust tracking control for a class of electrically driven flexible-joint robots without velocity measurements. Inter J Control. 2012;85(2):194–212.

    Article  MathSciNet  MATH  Google Scholar 

  12. Yang RX, Yang CG, Mou Chen M, et al. Discrete-time optimal adaptive RBFNN control for robot manipulators with uncertain dynamics. Neurocomputing. 2017;234:107–15.

    Article  Google Scholar 

  13. Mario RN, Gilberto OO, et al. On the robust trajectory tracking task for flexible-joint robotic arm with unmodeled dynamics. IEEE Access. 2016;4:7816–27.

    Article  Google Scholar 

  14. Liu Z, Chen C, Zhang Y, Chen CLP. Coordinated fuzzy control of robotic arms with actuator nonlinearities and motion constraints. Inform Sci. 2015;296:1–13.

    Article  MATH  Google Scholar 

  15. Meng WC, Yang QM, Si SN, Sun YX. Adaptive neural control of a class of output-constrained non-affine systems. IEEE Trans Cybern. 2016;46(1):85–95.

    Article  Google Scholar 

  16. Guo T, Wu WC. Backstepping control for output-constrained nonlinear systems based on nonlinear mapping. Neural Comput Appl. 2014;25:166–1674.

    Google Scholar 

  17. Jiang ZP, Praly L. Design of robust adaptive controllers for nonlinear systems with dynamic uncertainties. Automatica. 1998;34(7):825–40.

    Article  MathSciNet  MATH  Google Scholar 

  18. Xia XN, Zhang TP. Adaptive output feedback dynamic surface control of nonlinear systems with unmodeled dynamics and unknown high-frequency gain sign. Neurocomputing. 2014;143:312–21.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (61573307, 61473250 and 61473249) and Yangzhou University Top-level Talents Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianping Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Wang, N., Zhang, T. (2018). Adaptive Tracking Control of a Single-Link Flexible Robotic Manipulator System with Unmodeled Dynamics and Motion Constraint. In: Jia, Y., Du, J., Zhang, W. (eds) Proceedings of 2017 Chinese Intelligent Systems Conference. CISC 2017. Lecture Notes in Electrical Engineering, vol 460. Springer, Singapore. https://doi.org/10.1007/978-981-10-6499-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6499-9_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6498-2

  • Online ISBN: 978-981-10-6499-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics