Advertisement

Ocean Acidification Studies in Coral Reefs of Japan

Chapter
Part of the Coral Reefs of the World book series (CORW, volume 13)

Abstract

Increasing anthropogenic CO2 emissions cause progressive ocean acidification, reducing the calcium carbonate saturation state and coral reef calcification rate. The future uptake of CO2 by the world ocean is predicted to reduce seawater pH by 0.3–0.5 units over the next few decades, which corresponds to a rate 100 times faster than that observed at any time during the last 20 million years. In this chapter, we discuss the effects of ocean acidification on coral reefs, which have been initially probed by culture experiments at several decreased pH conditions, being subsequently investigated by multiple stress factor experiments and field observations of acidified sites. By considering previous studies, we propose that the evaluation and prediction of future ecosystem dynamics require the development of convenient and inexpensive carbonate chemistry-related field measurement techniques such as pH logging, additionally highlighting the importance of studying two naturally acidified sites in Japan, namely, the Iwotorishima and Shikine Islands.

Keywords

Ocean acidification Coral Foraminifera Ecosystem Culture experiment Japan 

Notes

Acknowledgment

I thank all people who supported my work on ocean acidification and two reviewers whose comments improved its quality. This work was supported by JST Core Research for Evolutional Science and Technology (CREST) Grant Number JPMJCR13A1, Japan.

References

  1. Agostini S, Fujimura H, Higuchi T, Yuyama I, Casareto BE, Suzuki Y, Nakano Y (2013) The effects of thermal and high-CO2 stresses on the metabolism and surrounding microenvironment of the coral Galaxea fascicularis. C R Biologies 336(8):384–391. https://doi.org/10.1016/j.crvi.2013.07.003 CrossRefGoogle Scholar
  2. Agostini S, Wada S, Kona K, Omori A, Kohtsuka H, Fujimura H, Tsuchiya Y, Sato T, Shinagawa H, Yamada Y, Inaba K (2015) Geochemistry of two shallow CO2 seeps in Shikine Island (Japan) and their potential for ocean acidification research. Reg Stud Mar Sci 2:45–53. https://doi.org/10.1016/j.rsma.2015.07.004 CrossRefGoogle Scholar
  3. Andersson AJ, Mackenzie FT (2012) Revisiting four scientific debates in ocean acidification research. Biogeosciences 9:893–905CrossRefGoogle Scholar
  4. Andersson AJ, Kuffner IB, Mackenzie FT, Jokiel PL, Rodgers KS, Tan AA (2009) Net loss of CaCO3 from a subtropical calcifying community due to seawater acidification: mesocosm-scale experimental evidence. Biogeosciences 6:1811–1823CrossRefGoogle Scholar
  5. Baria MVB, Kurihara H, Harii S (2015) Tolerance to elevated temperature and ocean acidification of the larvae of the solitary corals Fungia fungites (Linnaues, 1758) and Lithophyllon repanda (Dana, 1846). Zool Sci 32(5):447–454. https://doi.org/10.2108/zs150036 CrossRefGoogle Scholar
  6. Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365CrossRefGoogle Scholar
  7. Dickson AG (2010) The carbon dioxide system in seawater: equilibrium chemistry and measurements. In: Riebesell U, Fabry VJ, Hansson L, Gattuso JP (eds) Guide to best practices in ocean acidification research and data reporting. Office for Official Publications of the European Communities, Luxembourg, pp 17–40Google Scholar
  8. Doney S, Balch WM, Fabry VJ, Feely RA (2009) Ocean acidification a critical emerging problem for the ocean sciences. Oceanography 22:16–25CrossRefGoogle Scholar
  9. Eyre B, Andersson AJ, Cyronak T (2014) Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nat Clim Change 4:969–976. https://doi.org/10.1038/nclimate2380 CrossRefGoogle Scholar
  10. Fujita K, Hikami M, Suzuki A, Kuroyanagi A, Sakai K, Kawahata H, Nojiri Y (2011) Effects of ocean acidification on calcification of symbiont-bearing reef foraminifers. Biogeosciences 8:2089–2098. https://doi.org/10.5194/bg-8-2089-2011 CrossRefGoogle Scholar
  11. Gattuso JP, Hansson L (2011) Ocean acidification. Oxford University Press, Oxford. 311ppGoogle Scholar
  12. Hikami M, Ushie H, Irie T, Fujita K, Kuroyanagi A, Sakai K, Nojiri Y, Suzuki A, Kawahata H (2011) Contrasting calcification responses to ocean acidification between two reef foraminifers harboring different algal symbionts. Geophys Res Lett 38:L19601. https://doi.org/10.1029/2011GL048501 CrossRefGoogle Scholar
  13. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P et al (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742CrossRefGoogle Scholar
  14. Iguchi A, Ozaki S, Nakamura T, Inoue M, Tanaka Y, Suzuki A, Kawahata H, Sakai K (2012) Effects of acidified seawater on coral calcification and symbiotic algae on the massive coral Porites australiensis. Mar Environ Res 73:32–36. https://doi.org/10.1016/j.marenvres.2011.10.008 CrossRefGoogle Scholar
  15. Iguchi A, Kumagai NH, Nakamura T, Suzuki A, Sakai K, Nojiri Y (2014) Responses of calcification of massive and encrusting corals to past, present, and near-future ocean carbon dioxide concentrations. Mar Pollut Bull 89:348–355. https://doi.org/10.1016/j.marpolbul.2014.09.037 CrossRefGoogle Scholar
  16. Iguchi A, Suzuki A, Sakai K, Nojiri Y (2015) Comparison of the effects of thermal stress and CO2-driven acidified seawater on fertilization in coral Acropora digitifera. Zygote 23:631–634. https://doi.org/10.1017/S0967199414000185 CrossRefGoogle Scholar
  17. Inoue M, Suwa R, Suzuki A, Sakai K, Kawahata H (2011) Effects of seawater pH on growth and skeletal U/Ca ratios of Acropora digitifera coral polyps. Geophys Res Lett 38:L12809. https://doi.org/10.1029/2011GL047786 Google Scholar
  18. Inoue S, Kayanne H, Yamamoto S, Kurihara H (2013) Spatial community shift from hard to soft corals in acidified water. Nat Clim Chang 3(7):683–687. https://doi.org/10.1038/NCLIMATE1855 CrossRefGoogle Scholar
  19. Kato A, Hikami M, Kumagai NH, Suzuki A, Nojiri Y, Sakai K (2014) Negative effects of ocean acidification on two crustose coralline species using genetically homogeneous samples. Mar Environ Res 94:1–6. https://doi.org/10.1016/j.marenvres.2013.10.010 CrossRefGoogle Scholar
  20. Kleypas JA, Buddemeier RW, Archer D, Gattuso JP, Langdon C, Opdyke BN (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120CrossRefGoogle Scholar
  21. Kleypas JA, Feely RA, Fabry VJ, Langdon C, Sabine CL, Robbins LL (2006) Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research, report of a workshop held 18–20 April 2005. St. Petersburg, FL, sponsored by NSF, NOAA, and the US Geological SurveyGoogle Scholar
  22. Kroeker KS, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, Duarte CM, Gattuso JP (2013) Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Chang Biol 19:1884–1896. https://doi.org/10.1111/gcb.12179 CrossRefGoogle Scholar
  23. Kubota K, Yokoyama Y, Ishikawa T, Obrochta S, Suzuki A (2014) Larger CO2 source at the equatorial Pacific during the last deglaciation. Sci Rep 4:5261. https://doi.org/10.1038/srep05261 CrossRefGoogle Scholar
  24. Kubota K, Yokoyama Y, Ishikawa T, Suzuki A, Ishii M (2017) Rapid decline in pH of coral calcification fluid due to incorporation of anthropogenic CO2. Sci Rep 7(1):7694Google Scholar
  25. Kurihara H (2008) Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar Ecol Prog Ser 373:275–284. https://doi.org/10.3354/meps07802 CrossRefGoogle Scholar
  26. Kuroyanagi A, Kawahata H, Suzuki A, Fujita K, Irie T (2009) Impacts of ocean acidification on large benthic foraminifers: results from laboratory experiments. Mar Micropaleontol 73:190–195. https://doi.org/10.1016/j.marmicro.2009.09.003 CrossRefGoogle Scholar
  27. Millero FJ (2006) Chemical oceanography. CRC/Taylor and Francis, Boca RatonGoogle Scholar
  28. Morita M, Suwa R, Iguchi A, Nakamura M, Shimada K, Sakai K, Suzuki A (2009) Ocean acidification reduces sperm flagellar motility in broadcast spawning reef invertebrates. Zygote 18:103–107. https://doi.org/10.1017/S0967199409990177 CrossRefGoogle Scholar
  29. Nakamura M, Morita M (2012) Sperm motility of the scleractinian coral Acropora digitifera under preindustrial, current, and predicted ocean acidification regimes. Aquat Biol 15:299–302. https://doi.org/10.3354/ab00436 CrossRefGoogle Scholar
  30. Nakamura M, Ohki S, Suzuki A, Sakai K (2011) Coral larvae under ocean acidification: survival, metabolism, and metamorphosis. PLoS One 6(1):e14521. https://doi.org/10.1371/journal.pone.0014521 CrossRefGoogle Scholar
  31. Nakamura T, Nadaoka K, Watanabe A (2013) A coral polyp model of photosynthesis, respiration and calcification incorporating a transcellular ion transport mechanism. Coral Reefs 32(3):779–794. https://doi.org/10.1007/s00338-013-1032-2 CrossRefGoogle Scholar
  32. Ohno Y, Iguchi A, Shinzato C, Inoue M, Suzuki A, Sakai K, Nakamura T (2017) An aposymbiotic primary coral polyp counteracts acidification by active pH regulation. Sci Rep 7:40324. https://doi.org/10.1038/srep40324
  33. Ohki S, Irie T, Inoue M, Shinmen K, Kawahata H, Nakamura T, Kato A, Nojiri Y, Suzuki A, Sakai K, Woesik R (2013) Calcification responses of symbiotic and aposymbiotic corals to near-future levels of ocean acidification. Biogeosciences 10:6807–6814. https://doi.org/10.5194/bg-10-6807-2013 CrossRefGoogle Scholar
  34. Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1131–1134. https://doi.org/10.1130/G30210A.1 CrossRefGoogle Scholar
  35. Sabine CL, Feely RA, Gruber N, Key RM, Lee K et al (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371CrossRefGoogle Scholar
  36. Shinjo R, Asami R, Huang KF, You CF, Iryu Y (2013) Ocean acidification trend in the tropical North Pacific since the mid-20th century reconstructed from a coral archive. Mar Geol 342:58–64. https://doi.org/10.1016/j.margeo.2013.06.002 CrossRefGoogle Scholar
  37. Suwa R, Nakamura M, Morita M, Shimada K, Iguchi A, Sakai K, Suzuki A (2010) Effects of acidified seawater on early life stages of scleractinian corals (genus Acropora). Fish Sci 76:93–99. https://doi.org/10.1007/s12562-009-0189-7 CrossRefGoogle Scholar
  38. Takahashi A, Kurihara H (2013) Ocean acidification does not affect the physiology of the tropical coral Acropora digitifera during a 5-week experiment. Coral Reefs 32:305–314. https://doi.org/10.1007/s00338-012-0979-8 CrossRefGoogle Scholar
  39. Takao S, Yamano H, Sugihara K, Kumagai NH, Fujii M, Yamanaka Y (2015) An improved estimation of the poleward expansion of coral habitats based on the inter-annual variation of sea surface temperatures. Coral Reefs 34:1125–1137. https://doi.org/10.1007/s00338-015-1347-2 CrossRefGoogle Scholar
  40. Tanaka Y, Iguchi A, Nishida K, Inoue M, Nakamura T, Suzuki A, Sakai K (2014) Nutrient availability affects the response of juvenile corals and the endosymbionts to ocean acidification. Limnol Oceanogr 59(5):1468–1476. https://doi.org/10.4319/lo.2014.59.5.1468 CrossRefGoogle Scholar
  41. Toyofuku T, Matsuo MY, De Nooijer LJ, Nagai Y, Kawada S, Fujita K, Reichart GJ, Nomaki H, Tsuchiya M, Sakaguchi H, Kitazato H (2017) Proton pumping accompanies calcification in foraminifera. Nat Commun 8:14145. https://doi.org/10.1038/ncomms14145 CrossRefGoogle Scholar
  42. Yamamoto S, Kayanne H, Terai M, Watanabe A, Kato K, Negishi A, Nozaki K (2012) Threshold of carbonate saturation state determined by CO2 control experiment. Biogeosciences 9:1441–1450. https://doi.org/10.5194/bg-9-1441-2012 CrossRefGoogle Scholar
  43. Yamamoto S, Kayanne H, Tokoro T, Kuwae T, Watanabe A (2015) Total alkalinity flux in coral reefs estimated from eddy covariance and sediment pore-water profiles. Limnol Oceanogr 60:229–241. https://doi.org/10.1002/lno.10018 CrossRefGoogle Scholar
  44. Yara Y, Vogt M, Fujii M, Yamano H, Hauri C, Steinacher M, Gruber N, Yamanaka Y (2012) Ocean acidification limits temperature-induced poleward expansion of coral habitats around Japan. Biogeosciences 9:4955–4968. https://doi.org/10.5194/bg-9-4955-2012 CrossRefGoogle Scholar
  45. Yara Y, Yamano H, Steinacher M, Fujii M, Vogt M, Gruber N, Yamanaka Y (2016) Potential future coral habitats around Japan depend strongly on anthropogenic CO2 emissions, Aquatic Biodiversity Conservation and Ecosystem Services. Springer, Singapore, pp 41–56Google Scholar
  46. Zeebe RE, Wolf-Gladrow D (2003) CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier Science, New YorkGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Earth and Planetary ScienceThe University of TokyoTokyoJapan

Personalised recommendations