Advertisement

Dissolved Organic Matter in Coral Reefs: Distribution, Production, and Bacterial Consumption

  • Yasuaki Tanaka
  • Ryota Nakajima
Chapter
Part of the Coral Reefs of the World book series (CORW, volume 13)

Abstract

Dissolved organic matter (DOM) constitutes the largest organic matter pool in coral reef waters and is released and utilized by various coral reef organisms. In this chapter, we review the distribution and fluctuation of DOM concentrations in coral reefs around the world, with a special focus on Shiraho Reef, Ishigaki Island, Okinawa, Japan, where DOM fluxes have been studied most intensively since the late 1990s. Then, we review the DOM production rates from specific reef organisms and DOM consumption rates by bacteria. Previous studies have shown that both dissolved organic carbon and nitrogen (DOC and DON, respectively) generally have a higher concentration in most coral reefs than in the surrounding ocean. At Shiraho Reef, the average ratio of the net DOC production to the net primary production on the reef flat was 18%, and the C:N ratio of DOM that was produced on the reef flat was estimated to be 9.3. The abundance of heterotrophic bacteria was also higher in most coral reefs than offshore, which indicates that bacterial growth was enhanced by reef-derived DOM. Some of the DOC that was produced in coral reefs was persistent to bacterial decomposition in the long term, which suggests that coral reef ecosystems export some reef-derived DOM to the ambient ocean, irrespective of the water residence time in the reef.

Keywords

DOM C:N ratio Biogeochemical cycles Nutrients Coral Benthic algae Phytoplankton Primary production Decomposition Refractory organic matter 

Notes

Acknowledgment

We are grateful to two anonymous reviewers who gave us plenty of valuable comments to improve this article. This study was supported by Brunei Research Council (S&T-14), the Japan Society for the Promotion of Science (JSPS) Asian CORE Program, and JSPS Postdoctoral Fellowships for Research Abroad.

References

  1. Abdullah MI, Fredriksen S (2004) Production, production, respiration and exudation of dissolved organic matter by the kelp Laminaria hyperborean along the west coast of Norway. J Mar Biol Assoc U K 84:887–894. https://doi.org/10.1017/S002531540401015Xh CrossRefGoogle Scholar
  2. Atkinson MJ (2011) Biogeochemistry of nutrients. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Dordrecht, pp 199–206. https://doi.org/10.1007/978-94-007-0114-4_13 CrossRefGoogle Scholar
  3. Atkinson MJ, Falter JL (2003) Coral reefs. In: Black K, Shimmield G (eds) Biogeochemistry of marine systems. CRC Press, Boca Raton, pp 40–64Google Scholar
  4. Atkinson MJ, Smith SV (1983) C:N:P ratios of benthic marine plants. Limnol Oceanogr 28:568–574. https://doi.org/10.4319/lo.1983.28.3.0568 CrossRefGoogle Scholar
  5. Atkinson MJ, Smith DF (1987) Slow uptake of 32P over a barrier reef flat. Limnol Oceanogr 32:436–441. https://doi.org/10.4319/lo.1987.32.2.0436 CrossRefGoogle Scholar
  6. Azam F, Finches T, Gray JC et al (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263. https://doi.org/10.3354/meps010257 CrossRefGoogle Scholar
  7. Badgley BD, Lipschultz F, Sebens KP (2006) Nitrate uptake by the reef coral Diploria strigosa: effects of concentration, water flow, and irradiance. Mar Biol 149:327–338. https://doi.org/10.1007/s00227-005-0180-5 CrossRefGoogle Scholar
  8. Barrón C, Duarte CM (2009) Dissolved organic matter release in a Posidonia oceanica meadow. Mar Ecol Prog Ser 374:75–84. https://doi.org/10.3354/meps07715 CrossRefGoogle Scholar
  9. Barrón C, Marbà N, Terrados J et al (2004) Community metabolism and carbon budget along a gradient of seagrass (Cymodocea nodosa) colonization. Limnol Oceanogr 49:1642–1651. https://doi.org/10.4319/lo.2004.49.5.1642 CrossRefGoogle Scholar
  10. Bauer JE, Williams PM, Druffel ERM (1992) 14C activity of dissolved organic carbon fractions in the north-central Pacific and Sargasso Sea. Nature 357:67–670. https://doi.org/10.1038/357667a0 CrossRefGoogle Scholar
  11. Blanchot J, Charpy L, Le Borgne R (1989) Size composition of particulate organic matter in the lagoon of Tikehau atoll (Tuamotu archipelago). Mar Biol 102:329–339. https://doi.org/10.1007/BF00428485 CrossRefGoogle Scholar
  12. Blanco AC, Nadaoka K, Yamamoto T (2008) Planktonic and benthic microalgal community composition as indicators of terrestrial influence on a fringing reef in Ishigaki Island, Southwest Japan. Mar Environ Res 66:520–535. https://doi.org/10.1016/j.marenvres.2008.08.005 CrossRefGoogle Scholar
  13. Bouvy M, Combe M, Bettarel Y et al (2012) Uncoupled viral and bacterial distributions in coral reef waters of Tuamotu Archipelago (French Polynesia). Mar Pollut Bull 65:506–515. https://doi.org/10.1016/j.marpolbul.2012.01.001 CrossRefGoogle Scholar
  14. Brocke HJ, Wenzhoefer F, de Beer D et al (2015) High dissolved organic carbon release by benthic cyanobacterial mats in a Caribbean reef ecosystem. Sci Rep 5:8852. https://doi.org/10.1038/srep08852 CrossRefGoogle Scholar
  15. Brown BE, Bythel JC (2005) Perspectives on mucus secretion in reef corals. Mar Ecol Prog Ser 296:291–309. https://doi.org/10.3354/meps296291 CrossRefGoogle Scholar
  16. Burkepile DE, Hay ME (2009) Nutrient versus herbivore control of macroalgal community development and coral growth on a Caribbean reef. Mar Ecol Prog Ser 389:71–84. https://doi.org/10.3354/meps08142 CrossRefGoogle Scholar
  17. Carlson CA (2002) Production and removal processes. In: Hansel DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Academic, San Diego, pp 91–151. https://doi.org/10.1016/B978-012323841-2/50006-3 CrossRefGoogle Scholar
  18. Casareto BE, Charpy L, Blanchot J, Suzuki Y, Kurosawa K, Ishikawa Y (2006) Phototrophic prokaryotes in Bora Bay, Miyako Island, Okinawa, Japan. In: Proceedings of 10th international coral reef symposium, pp 844–853Google Scholar
  19. Cawley KM, Ding Y, Fourqurean J et al (2012) Characterising the sources and fate of dissolved organic matter in Shark Bay, Australia: a preliminary study using optical properties and stable carbon isotopes. Mar Freshw Res 63:1098–1107. https://doi.org/10.1071/MF12028 CrossRefGoogle Scholar
  20. Charpy-Roubaud CJ, Charpy L, Lemasson L (1988) Benthic and planktonic primary production of an open atoll lagoon (Tikehau, French Polynesia). Proc 6th Int Coral Reef Symp 2:551–556Google Scholar
  21. Cho BC, Azam F (1988) Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature 332:441–443. https://doi.org/10.1038/332441a0 CrossRefGoogle Scholar
  22. Cooney RP, Pantos O, Le Tissier MDA et al (2002) Characterisation of the bacterial consortium associated with black band disease in coral using molecular microbiological techniques. Environ Microbiol 4:401–413. https://doi.org/10.1046/j.1462-2920.2002.00308.x CrossRefGoogle Scholar
  23. Crossland CJ (1987) In situ release of mucus and DOC-lipid from the corals Acropora variabilis and Stylophora pistillata in different light regimes. Coral Reefs 6:35–42. https://doi.org/10.1007/BF00302210 CrossRefGoogle Scholar
  24. Crossland CJ, Hatcher BG, Smith SV (1991) Role of coral reefs in global ocean production. Coral Reefs 10:55–64. https://doi.org/10.1007/BF00571824 CrossRefGoogle Scholar
  25. Davies PS (1984) The role of zooxanthellae in the nutritional energy requirements of Pocillopora eydouxi. Coral Reefs 2:181–186. https://doi.org/10.1007/BF00263571 CrossRefGoogle Scholar
  26. Delesalle B, Sournia A (1992) Residence time of water and phytoplankton biomass in coral reef lagoons. Cont Shelf Res 12:939–949. https://doi.org/10.1016/0278-4343(92)90053-M CrossRefGoogle Scholar
  27. de Goeij JM, van den Berg H, van Oostveen MM et al (2008) Major bulk dissolved organic carbon (DOC) removal by encrusting coral reef cavity sponges. Mar Ecol Prog Ser 357:139–151. https://doi.org/10.3354/meps07403 CrossRefGoogle Scholar
  28. de Goeij JM, van Oevelen D, Vermeij MJA et al (2013) Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342:108–110. https://doi.org/10.1126/science.1241981 CrossRefGoogle Scholar
  29. Dinsdale EA, Rohwer F (2011) Fish or germs? Microbial dynamics associated with changing trophic structures on coral reefs. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer Science + Business Media B.V., pp 231–240. doi:https://doi.org/10.1007/978-94-007-0114-4_16
  30. Dinsdale EA, Pantos O, Smriga S et al (2008) Microbial ecology of four coral atolls in the Northern Line Islands. PLoS One 3:e1584. https://doi.org/10.1371/journal.pone.0001584 CrossRefGoogle Scholar
  31. Duarte CM (1992) Nutrient concentration of aquatic plants: patterns across species. Limnol Oceanogr 37:882–889. https://doi.org/10.4319/lo.1992.37.4.0882 CrossRefGoogle Scholar
  32. Duarte CM, Cebrián J (1996) The fate of marine autotrophic production. Limnol Oceanogr 41:1758–1766. https://doi.org/10.4319/lo.1996.41.8.1758 CrossRefGoogle Scholar
  33. Dubinsky Z, Berman-Frank I (2001) Uncoupling primary production from population growth in photosynthesizing organisms in aquatic ecosystems. Aquat Sci 63:4–17. https://doi.org/10.1007/PL00001343 CrossRefGoogle Scholar
  34. Ducklow HW, Mitchell R (1979) Composition of mucus released by coral reef coelenterates. Limnol Oceanogr 24:706–714. https://doi.org/10.4319/lo.1979.24.4.0706 CrossRefGoogle Scholar
  35. Ferrier-Pagès C, Furla P (2001) Pico- and nanoplankton biomass and production in the two largest atoll lagoons of French Polynesia. Mar Ecol Prog Ser 211:63–76. https://doi.org/10.3354/meps211063 CrossRefGoogle Scholar
  36. Ferrier-Pagès C, Gattuso J-P (1998) Biomass, production and grazing rates of pico- and nanoplankton in coral reef waters (Miyako Island, Japan). Microb Ecol 35:46–57. https://doi.org/10.1007/s002489900059 CrossRefGoogle Scholar
  37. Ferrier-Pagès C, Gattuso J-P, Cauwet G et al (1998) Release of dissolved organic carbon and nitrogen by the zooxanthellate coral Galaxea fascicularis. Mar Ecol Prog Ser 172:265–274. https://doi.org/10.3354/meps172265 CrossRefGoogle Scholar
  38. Ferrier-Pagès C, Leclercq N, Jaubert J et al (2000) Enhancement of pico- and nanoplankton growth by coral exudates. Aquat Microb Ecol 21:203–209. https://doi.org/10.3354/ame021203 CrossRefGoogle Scholar
  39. Fourqurean JW, Zieman JC, Powell GVN (1992) Phosphorus limitation of primary production in Florida Bay: evidence from C:N:P ratios of the dominant seagrass Thalassia testudinum. Limnol Oceanogr 37:162–171. https://doi.org/10.4319/lo.1992.37.1.0162 CrossRefGoogle Scholar
  40. Fuhrman JA, Sleeter TD, Carlson CA, Proctor LM (1989) Dominance of bacterial biomass in the Sargasso Sea and its ecological implications. Mar Ecol Prog Ser 57:207–218. https://doi.org/10.3354/meps057207 CrossRefGoogle Scholar
  41. Fukuda R, Ogawa H, Nagata T, Koike I (1998) Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Appl Environ Microb 64:3352–3358Google Scholar
  42. Furnas M, Mitchell A, Skuza M, Brodie J (2005) In the other 90%: phytoplankton responses to enhanced nutrient availability in the Great Barrier Reef Lagoon. Mar Pollut Bull 51:253–265. https://doi.org/10.1016/j.marpolbul.2004.11.010 CrossRefGoogle Scholar
  43. Gast GJ, Wiegman S, Wieringa E et al (1998) Bacteria in coral reef water types: removal of cells, stimulation of growth and mineralization. Mar Ecol Prog Ser 167:37–45. https://doi.org/10.3354/meps167037 CrossRefGoogle Scholar
  44. Gattuso J-P, Pichon M, Belesalle B et al (1996) Carbon fluxes in coral reefs. I. Lagrangian measurement of community metabolism and resulting air-sea CO2 disequilibrium. Mar Ecol Prog Ser 145:109–121. https://doi.org/10.3354/meps145109 CrossRefGoogle Scholar
  45. Gattuso J-P, Frankignoulle M, Wollast R (1998) Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu Rev Ecol Syst 29:405–434. https://doi.org/10.1146/annurev.ecolsys.29.1.405 CrossRefGoogle Scholar
  46. González JM, Torréton J-P, Dufour P et al (1998) Temporal and spatial dynamics of the pelagic microbial food web in an atoll lagoon. Aquat Microb Ecol 16:53–64. https://doi.org/10.3354/ame016053 CrossRefGoogle Scholar
  47. Grover R, Maguer J-F, Allemand D et al (2006) Urea uptake by the scleractinian coral Stylophora pistillata. J Exp Mar Biol Ecol 332:216–225. https://doi.org/10.1016/j.jembe.2005.11.020 CrossRefGoogle Scholar
  48. Grover R, Maguer J-F, Allemand D et al (2008) Uptake of dissolved free amino acids by the scleractinian coral Stylophora pistillata. J Exp Biol 211:860–865. https://doi.org/10.1242/jeb.012807 CrossRefGoogle Scholar
  49. Haas AF, Jantzen C, Naumann S et al (2010a) Organic matter release by the dominant primary producers in a Caribbean reef lagoon: implication for in situ O2 availability. Mar Ecol Prog Ser 409:27–39. https://doi.org/10.3354/meps08631 CrossRefGoogle Scholar
  50. Haas AF, Naumann MS, Struck U et al (2010b) Organic matter release by coral reef associated benthic algae in the Northern Red Sea. J Exp Mar Biol Ecol 389:53–60. https://doi.org/10.1016/j.jembe.2010.03.018 CrossRefGoogle Scholar
  51. Haas AF, Nelson CE, Kelly LW et al (2011) Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity. PLoS One 6:e27973. https://doi.org/10.1371/journal.pone.0027973 CrossRefGoogle Scholar
  52. Haas AF, Nelson CE, Rohwer F et al (2013) Influence of coral and algal exudates on microbially mediated reef metabolism. Peer J 1:e108. https://doi.org/10.7717/peerj.108 CrossRefGoogle Scholar
  53. Haas AF, Fairoz MFM, Kelly LW et al (2016) Global microbialization of coral reefs. Nat Microbiol 1:16042. https://doi.org/10.1038/nmicrobiol.2016.42 CrossRefGoogle Scholar
  54. Hata H, Kudo S, Yamano H et al (2002) Organic carbon flux in Shiraho coral reef (Ishigaki Island, Japan). Mar Ecol Prog Ser 232:129–140. https://doi.org/10.3354/meps232129 CrossRefGoogle Scholar
  55. Hearn CJ, Atkinson MJ, Falter JL (2001) A physical derivation of nutrient-uptake rates in coral reefs: effects of roughness and waves. Coral Reefs 20:347–356. https://doi.org/10.1007/s00338-001-0185-6 CrossRefGoogle Scholar
  56. Hedges JI (1992) Global biogeochemical cycles; progress and problems. Mar Chem 39:67–93. https://doi.org/10.1016/0304-4203(92)90096-S CrossRefGoogle Scholar
  57. Herndl GJ, Velimirov B (1986) Microheterotrophic utilization of mucus released by the Mediterranean coral Cladocora cespitosa. Mar Biol 90:363–369. https://doi.org/10.1007/BF00428560 CrossRefGoogle Scholar
  58. Hoch MP, Dillon KS, Coffin RB et al (2008) Sensitivity of bacterioplankton nitrogen metabolism to eutrophication in sub-tropical coastal waters of Key West, Florida. Mar Pollut Bull 56:913–926. https://doi.org/10.1016/j.marpolbul.2008.01.030 CrossRefGoogle Scholar
  59. Hopkinson CS Jr, Vallino JJ, Amy N (2002) Decomposition of dissolved organic matter from the continental margin. Deep-Sea Res II 49:4461–4478. https://doi.org/10.1016/S0967-0645(02)00125-X CrossRefGoogle Scholar
  60. Houlbrèque F, Delesalle B, Blanchot J et al (2006) Picoplankton removal by the coral reef community of La Prévoyante, Mayotte Island. Aquat Microb Ecol 44:59–70. https://doi.org/10.3354/ame044059 CrossRefGoogle Scholar
  61. Iryu Y, Nakamori T, Matsuda S et al (1995) Distribution of marine organisms and its geological significance in the modern reef complex of the Ryukyu Islands. Sediment Geol 99:243–258. https://doi.org/10.1016/0037-0738(95)00047-C CrossRefGoogle Scholar
  62. Karl DM, Hebel DV, Björkman K et al (1998) The role of dissolved organic matter release in the productivity of the oligotrophic North Pacific Ocean. Limnol Oceanogr 43:1270–1286. https://doi.org/10.4319/lo.1998.43.6.1270 CrossRefGoogle Scholar
  63. Kawahata H, Yukino I, Suzuki A (2000) Terrestrial influences on the Shiraho fringing reef, Ishigaki Island, Japan: high carbon input relative to phosphate. Coral Reefs 19:172–178. https://doi.org/10.1007/s003380000093 CrossRefGoogle Scholar
  64. Kayanne H, Suzuki A, Saito H (1995) Diurnal changes in the partial pressure of carbon dioxide in coral reef water. Science 269:214–216. https://doi.org/10.1126/science.269.5221.214 CrossRefGoogle Scholar
  65. Kayanne H, Hata H, Kudo S et al (2005) Seasonal and bleaching-induced changes in coral reef metabolism and CO2 flux. Glob Biogeochem Cycles 19:GB3015. https://doi.org/10.1029/2004GB002400 CrossRefGoogle Scholar
  66. Kennedy DM, Woodroffe CD (2002) Fringing reef growth and morphology: a review. Earth-Sci Rev 57:255–277. https://doi.org/10.1016/S0012-8252(01)00077-0 CrossRefGoogle Scholar
  67. Kirchman DL (2012) Processes in microbial ecology. Oxford University Press, OxfordGoogle Scholar
  68. Lapointe BE (1997) Nutrient thresholds for bottom-up control of macroalgal blooms on coral reefs in Jamaica and southeast Florida. Limnol Oceanogr 42:1119–1131. https://doi.org/10.4319/lo.1997.42.5_part_2.1119 CrossRefGoogle Scholar
  69. Lapointe BE, Langton R, Bedford BJ et al (2010) Land-based nutrient enrichment of the Buccoo reef complex and fringing coral reefs of Tobago, West Indies. Mar Pollut Bull 60:334–343. https://doi.org/10.1016/j.marpolbul.2009.10.020 CrossRefGoogle Scholar
  70. Lee SH, Kang YC, Fuhrman JA (1995) Imperfect retention of natural bacterioplakton cells by glass fiber filters. Mar Ecol Prog Ser 119:285–290CrossRefGoogle Scholar
  71. Levas S, Grottoli AG, Hughes A et al (2013) Physiological and biogeochemical traits of bleaching and recovery in the mounding species of coral Porites lobata: implications for resilience in mounding corals. PLoS One 8:e63267. https://doi.org/10.1371/journal.pone.0063267 CrossRefGoogle Scholar
  72. Levas S, Grottoli AG, Warner ME et al (2015) Organic carbon fluxes mediated by corals at elevated pCO2 and temperature. Mar Ecol Prog Ser 519:153–164. https://doi.org/10.3354/meps11072 CrossRefGoogle Scholar
  73. Linley E, Koop K (1986) Significance of pelagic bacteria as a trophic resource in a coral reef lagoon, One Tree Island, Great Barrier Reef. Mar Biol 92:457–464. https://doi.org/10.1007/BF00392505 CrossRefGoogle Scholar
  74. Littler MM, Littler DS, Brooks BL (2010) The effects of nitrogen and phosphorus enrichment on algal community development: artificial mini-reefs on the Belize Barrier Reef sedimentary lagoon. Harmful Algae 9:255–263. https://doi.org/10.1016/j.hal.2009.11.002 CrossRefGoogle Scholar
  75. Marañón E, Cermeño P, Fernández E et al (2004) Significance and mechanisms of photosynthetic production of dissolved organic carbon in a coastal eutrophic ecosystem. Limnol Oceanogr 49:1652–1666. https://doi.org/10.4319/lo.2004.49.5.1652 CrossRefGoogle Scholar
  76. Mari X, Rochelle-Newall E, Torréton J-P et al (2007) Water residence time: a regulatory factor of the DOM to POM transfer efficiency. Limnol Oceanogr 52:808–819. https://doi.org/10.4319/lo.2007.52.2.0808 CrossRefGoogle Scholar
  77. Meyers-Schulte KH, Hedges JI (1986) Molecular evidence for a terrestrial component of organic matter dissolved in ocean water. Nature 321:61–63. https://doi.org/10.1038/321061a0 CrossRefGoogle Scholar
  78. Miyajima T, Koike I, Yamano H et al (1998) Accumulation and transport of seagrass-derived organic matter in reef flat sediment of Green Island, Great Barrier Reef. Mar Ecol Prog Ser 175:251–259. https://doi.org/10.3354/meps175251 CrossRefGoogle Scholar
  79. Miyajima T, Hata H, Umezawa Y et al (2007a) Distribution and partitioning of nitrogen and phosphorus in a fringing reef lagoon of Ishigaki Island, northwestern Pacific. Mar Ecol Prog Ser 341:45–57. https://doi.org/10.3354/meps341045 CrossRefGoogle Scholar
  80. Miyajima T, Tanaka Y, Koike I et al (2007b) Evaluation of spatial correlation between nutrient exchange rates and benthic biota in a reef-flat ecosystem by GIS-assisted flow-tracking. J Oceanogr 63:643–659. https://doi.org/10.1007/s10872-007-0057-y CrossRefGoogle Scholar
  81. Moran MA, Zepp RG (1997) Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter. Limnol Oceanogr 42:1307–1316. https://doi.org/10.4319/lo.1997.42.6.1307 CrossRefGoogle Scholar
  82. Moriarty DJW (1979) Biomass of suspended bacteria over coral reefs. Mar Biol 53:193–200. https://doi.org/10.1007/BF00389189 CrossRefGoogle Scholar
  83. Moriarty DJW, Pollard PC, Hunt WG (1985) Temporal and spatial variation in bacterial production in the water column over a coral reef. Mar Biol 85:285–292. https://doi.org/10.1007/BF00393249 CrossRefGoogle Scholar
  84. Morrow KM (2011) Allelochemicals produced by Caribbean macroalgae and cyanobacteria have species-specific effects on reef coral microorganisms. Coral Reefs 30:309–320. https://doi.org/10.1007/s00338-011-0747-1 CrossRefGoogle Scholar
  85. Mostofa KMG, Liu C-Q, Mottaleb MA et al (2013) Dissolved organic matter in natural waters. In: Mostofa KMG et al (eds) Photobiogeochemistry of organic matter. Springer, Berlin/Heidelberg, pp 1–137. https://doi.org/10.1007/978-3-642-32223-5_1 CrossRefGoogle Scholar
  86. Mueller B, van der Zande RM, van Leent PJM (2014) Effect of light availability on dissolved organic carbon release by Caribbean reef algae and corals. Bull Mar Sci 90:875–893. https://doi.org/10.5343/bms.2013.1062 CrossRefGoogle Scholar
  87. Muller-Parker G, Cook CB, D’Elia CF (1994) Elemental composition of the coral Pocillopora damicornis exposed to elevated seawater ammonium. Pac Sci 48:234–246Google Scholar
  88. Nakajima R, Yoshida T, Azman BAR et al (2009) In situ release of coral mucus by Acropora and its influence on the heterotrophic bacteria. Aquat Ecol 43:815–823. https://doi.org/10.1007/s10452-008-9210-y CrossRefGoogle Scholar
  89. Nakajima R, Yoshida T, Fujita K et al (2010) Release of particulate and dissolved organic carbon by the scleractinian coral Acropora formosa. Bull Mar Sci 86:861–870. https://doi.org/10.5343/bms.2009.1069 CrossRefGoogle Scholar
  90. Nakajima R, Yoshida T, Shibata A, Othman BHR, Toda T (2011) Quality and quantity of particulate organic carbon in a coral reef at Tioman Island, Malaysia. Sains Malaysiana 40:1375–1382Google Scholar
  91. Nakajima R, Tsuchiya K, Nakatomi N et al (2013) Enrichment of microbial abundance in the sea-surface microlayer over a coral reef: implications for biogeochemical cycles in reef ecosystems. Mar Ecol Prog Ser 490:11–22. https://doi.org/10.3354/meps10481 CrossRefGoogle Scholar
  92. Nakajima R, Tanaka Y, Yoshida T et al (2015) High inorganic phosphate concentration in coral mucus and its utilization by heterotrophic bacteria in a Malaysian coral reef. Mar Ecol 36:835–841. https://doi.org/10.1111/maec.12158 CrossRefGoogle Scholar
  93. Nakamura T, Nakamori T (2009) Estimation of photosynthesis and calcification rates at a fringing reef by accounting for diurnal variations and the zonation of coral reef communities on reef flat and slope: a case study for the Shiraho reef, Ishigaki Island, southwest Japan. Coral Reefs 28:229–250. https://doi.org/10.1007/s00338-008-0454-8 CrossRefGoogle Scholar
  94. Naumann MS, Haas A, Struck U et al (2010) Organic matter release by dominant hermatypic corals of the Northern Red Sea. Coral Reefs 29:649–659. https://doi.org/10.1007/s00338-010-0612-7 CrossRefGoogle Scholar
  95. Naumann MS, Richter C, Mott C et al (2012) Budget of coral-derived organic carbon in a fringing coral reef of the Gulf of Aqaba, Red Sea. J Mar Syst 105–108:20–29. https://doi.org/10.1016/j.jmarsys.2012.05.007 CrossRefGoogle Scholar
  96. Nelson CE, Alldredge AL, McCliment EA et al (2011) Depleted dissolved organic carbon and distinct bacterial communities in the water column of a rapid-flushing coral reef ecosystem. ISME J 5:1374–1387. https://doi.org/10.1038/ismej.2011.12 CrossRefGoogle Scholar
  97. Nelson CE, Goldberg SJ, Kelly LW et al (2013) Coral and macroalgal exudates vary in neutral sugar composition and differentially enrich reef bacterioplankton lineages. ISME J 7:962–979. https://doi.org/10.1038/ismej.2012.161 CrossRefGoogle Scholar
  98. Ogawa H, Tanoue E (2003) Dissolved organic matter in oceanic waters. J Oceanogr 59:129–147. https://doi.org/10.1023/A:1025528919771 CrossRefGoogle Scholar
  99. Ogawa H, Fukuda R, Koike I (1999) Vertical distributions of dissolved organic carbon and nitrogen in the Southern Ocean. Deep-Sea Res 46:1809–1826. https://doi.org/10.1016/S0967-0637(99)00027-8 CrossRefGoogle Scholar
  100. Opsahl S, Benner R (1997) Distribution and cycling of terrigenous dissolved organic matter in the ocean. Nature 386:480–482. https://doi.org/10.1038/386480a0 CrossRefGoogle Scholar
  101. Pagès J, Torreton JP, Sempere R (1997) Dissolved organic carbon in coral-reef lagoons by high temperature catalytic oxidation and UV spectrometry. C R Acad Sci Ser II A Sci Terre Planetes 324:915–922. https://doi.org/10.1016/S1251-8050(97)82505-0ro CrossRefGoogle Scholar
  102. Paul JH, DeFlaun MF, Jeffrey WH (1986) Elevated levels of microbial activity in the coral surface microlayer. Mar Ecol Prog Ser 33:29–40. https://doi.org/10.3354/meps033029 CrossRefGoogle Scholar
  103. Pavés HJ, González HE (2008) Carbon fluxes within the pelagic food web in the coastal area off Antofagasta (23°S), Chile: the significance of the microbial versus classical food webs. Ecol Model 212:218–232. https://doi.org/10.1016/j.ecolmodel.2007.10.004 CrossRefGoogle Scholar
  104. Peters F, Marrasé C, Gasol JM et al (1998) Effects of turbulence on bacterial growth mediated through food web interactions. Mar Ecol Prog Ser 172:293–303. https://doi.org/10.3354/meps172293 CrossRefGoogle Scholar
  105. Pomeroy LR (1974) The ocean’s food web, a changing paradigm. Bioscience 24:499–504. https://doi.org/10.2307/1296885 CrossRefGoogle Scholar
  106. Riegl B, Branch GM (1995) Effects of sediment on the energy budgets of four scleractinian (Bourne 1900) and five alcyonacean (Lamouroux 1816) corals. J Exp Mar Biol Ecol 186:259–275. https://doi.org/10.1016/0022-0981(94)00164-9 CrossRefGoogle Scholar
  107. Rix L, de Goeij JM, Mueller CE et al (2016) Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems. Sci Rep 6:18715. https://doi.org/10.1038/srep18715 CrossRefGoogle Scholar
  108. Rochelle-Newall EJ, Torréton J-P, Mari X et al (2008) Phytoplankton–bacterioplankton coupling in a subtropical South Pacific coral reef lagoon. Aquat Microb Ecol 50:221–229. https://doi.org/10.3354/ame01158 CrossRefGoogle Scholar
  109. Rohwer F, Seguritan V, Azam F et al (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243:1–10. https://doi.org/10.3354/meps243001 CrossRefGoogle Scholar
  110. Sakka A, Legendre L, Gosselin M, Delesalle B (2000) Structure of the oligotrophic planktonic food web under low grazing of heterotrophic bacteria: Takapoto Atoll, French Polynesia. Mar Ecol Prog Ser 197:1–17. https://doi.org/10.3354/meps197001 CrossRefGoogle Scholar
  111. Sakka A, Legendre L, Gosselin M et al (2002) Carbon budget of the planktonic food web in an atoll lagoon (Takapoto, French Polynesia). J Plankton Res 24:301–320. https://doi.org/10.1093/plankt/24.4.301 CrossRefGoogle Scholar
  112. Sandin SA, Smith JE, DeMartini EE et al (2008) Baselines and degradation of coral reefs in the northern Line Islands. PLoS One 3:e1548. https://doi.org/10.1371/journal.pone.0001548 CrossRefGoogle Scholar
  113. Sanford LP, Crawford SM (2000) Mass transfer versus kinetic control of uptake across solid-water boundaries. Limnol Oceanogr 45:1180–1186. https://doi.org/10.4319/lo.2000.45.5.1180 CrossRefGoogle Scholar
  114. Scheffers SR, Bak RPM, Duyl FC (2005) Why is bacterioplankton growth in coral reef framework cavities enhanced? Mar Ecol Prog Ser 299:89–99. https://doi.org/10.3354/meps299089 CrossRefGoogle Scholar
  115. Seitzinger SP, Sanders RW (1999) Atmospheric inputs of dissolved organic nitrogen stimulate estuarine bacteria and phytoplankton. Limnol Oceanogr 44:721–730. https://doi.org/10.4319/lo.1999.44.3.0721 CrossRefGoogle Scholar
  116. Sharp JH, Carlson CA, Peltzer ET et al (2002a) Final dissolved organic carbon broad community intercalibration and preliminary use of DOC reference materials. Mar Chem 77:239–253. https://doi.org/10.1016/S0304-4203(02)00002-6 CrossRefGoogle Scholar
  117. Sharp JH, Rinker KR, Savidge KB et al (2002b) A preliminary methods comparison for measurement of dissolved organic nitrogen in seawater. Mar Chem 78:171–184. https://doi.org/10.1016/S0304-4203(02)00020-8 CrossRefGoogle Scholar
  118. Sharp JH, Beauregard AY, Burdige D et al (2004) A direct instrument comparison for measurement of total dissolved organic nitrogen in seawater. Mar Chem 84:181–193. https://doi.org/10.1016/j.marchem.2003.07.003 CrossRefGoogle Scholar
  119. Sherr EB, Sherr BF (1987) High rates of consumption of bacteria by pelagic ciliates. Nature 325:710–711. https://doi.org/10.1038/325710a0 CrossRefGoogle Scholar
  120. Shibata A, Goto Y, Saito H et al (2006) Comparison of SYBR green I and SYBR gold stains for enumerating bacteria and viruses by epifluorescence microscopy. Aquat Microb Ecol 43:223–231. https://doi.org/10.3354/ame043223 CrossRefGoogle Scholar
  121. Smith DC, Simon M, Alldredge AL et al (1992) Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359:139–142. https://doi.org/10.1038/359139a0 CrossRefGoogle Scholar
  122. Smith JE, Smith CM, Hunter CL (2001) An experimental analysis of the effects of herbivory and nutrient enrichment on benthic community dynamics on a Hawaiian reef. Coral Reefs 19:332–342. https://doi.org/10.1007/s003380000124 CrossRefGoogle Scholar
  123. Smith JE, Runcie JW, Smith CM (2005) Characterization of a large-scale ephemeral bloom of the green alga Cladophora sericea on the coral reefs of West Maui, Hawaii. Mar Ecol Prog Ser 302:77–91. https://doi.org/10.3354/meps302077 CrossRefGoogle Scholar
  124. Smith JE, Brainard R, Carter A, Grillo S, Edwards C, Harris J, Lewis L, Obura D, Rohwer F, Sale E, Vroom PS, Sandin S (2016) Re-evaluating the health of coral reef communities: baselines and evidence for human impacts across the central Pacific. Proc R Soc B Biol Sci 283:20151985. https://doi.org/10.1098/rspb.2015.1985 CrossRefGoogle Scholar
  125. Smith SV, Kimmerer WJ, Laws EA, Brock RE, Walsh TW (1981) Kaneohe Bay sewage diversion experiment: perspectives on ecosystem responses to nutritional perturbation. Pac Sci 35:279–395Google Scholar
  126. Sorokin YI (1973) Trophical role of bacteria in the ecosystem of the coral reef. Nature 242:415–417. https://doi.org/10.1038/242415a0 CrossRefGoogle Scholar
  127. Suzuki A, Nakamori T, Kayanne H (1995) The mechanism of production enhancement in coral reef carbonate systems: model and empirical results. Sediment Geol 99:259–280. https://doi.org/10.1016/0037-0738(95)00048-D CrossRefGoogle Scholar
  128. Suzuki Y, Casareto BE, Kurosawa K (2000) Import and export fluxes of HMW-DOC and LMW-DOC on a coral reef at Miyako Island, Okinawa. Proc 9th Int Coral Reef Symp 1:555–560Google Scholar
  129. Suzumura M, Miyajima T, Hata H et al (2002) Cycling of phosphorus maintains the production of microphytobenthic communities in carbonate sediments of a coral reef. Limnol Oceanogr 47:771–781. https://doi.org/10.4319/lo.2002.47.3.0771 CrossRefGoogle Scholar
  130. Tanaka Y, Miyajima T, Koike I et al (2007) Imbalanced coral growth between organic tissue and carbonate skeleton caused by nutrient enrichment. Limnol Oceanogr 52:1139–1146. https://doi.org/10.4319/lo.2007.52.3.1139 CrossRefGoogle Scholar
  131. Tanaka Y, Miyajima T, Koike I et al (2008a) Production of dissolved and particulate organic matter by the reef-building corals, Porites cylindrica and Acropora pulchra. Bull Mar Sci 82:237–245Google Scholar
  132. Tanaka Y, Miyajima T, Ozawa H (2008b) Bacterial degradability of dissolved organic carbon in coral mucus. In: Proceedings of 11th international coral reef symposium, pp 945–949Google Scholar
  133. Tanaka Y, Miyajima T, Umezawa Y et al (2009) Net release of dissolved organic matter by the scleractinian coral Acropora pulchra. J Exp Mar Biol Ecol 377:101–106. https://doi.org/10.1016/j.jembe.2009.06.023 CrossRefGoogle Scholar
  134. Tanaka Y, Ogawa H, Miyajima T (2010) Effects of nutrient enrichment on the release of dissolved organic carbon and nitrogen by the scleractinian coral Montipora digitata. Coral Reefs 29:675–682. https://doi.org/10.1007/s00338-010-0639-9 CrossRefGoogle Scholar
  135. Tanaka Y, Ogawa H, Miyajima T (2011a) Production and bacterial decomposition of dissolved organic matter in a fringing coral reef. J Oceanogr 67:427–437. https://doi.org/10.1007/s10872-011-0046-z CrossRefGoogle Scholar
  136. Tanaka Y, Miyajima T, Watanabe A et al (2011b) Distribution of dissolved organic carbon and nitrogen in a coral reef. Coral Reefs 30:533–541. https://doi.org/10.1007/s00338-011-0735-5 CrossRefGoogle Scholar
  137. Tanaka Y, Ogawa H, Miyajima T (2011c) Bacterial decomposition of coral mucus as evaluated by long-term and quantitative observation. Coral Reefs 30:443–449. https://doi.org/10.1007/s00338-011-0729-3 CrossRefGoogle Scholar
  138. Taniguchi A, Yoshida T, Eguchi M (2014) Bacterial production is enhanced by coral mucus in reef systems. J Eex Mar Biol Ecol 461:331–336. https://doi.org/10.1016/j.jembe.2014.09.004 CrossRefGoogle Scholar
  139. Tedetti M, Cuet P, Guigue C et al (2011) Characterization of dissolved organic matter in a coral reef ecosystem subjected to anthropogenic pressures (La Réunion Island, Indian Ocean) using multi-dimensional fluorescence spectroscopy. Sci Total Environ 409:2198–2210. https://doi.org/10.1016/j.scitotenv.2011.01.058 CrossRefGoogle Scholar
  140. Thibodeau B, Miyajima T, Tayasu I et al (2013) Heterogeneous dissolved organic nitrogen supply over a coral reef: first evidence from nitrogen stable isotope ratios. Coral Reefs 32:1103–1110. https://doi.org/10.1007/s00338-013-1070-9 CrossRefGoogle Scholar
  141. Thomas FIM, Atkinson MJ (1997) Ammonium uptake by coral reefs: effects of water velocity and surface roughness on mass transfer. Limnol Oceanogr 42:81–88. https://doi.org/10.4319/lo.1997.42.1.0081 CrossRefGoogle Scholar
  142. Torréton J-P (1999) Biomass, production and heterotrophic activity of bacterioplankton in the Great Astrolabe Reef lagoon (Fiji). Coral Reefs 18:43–53. https://doi.org/10.1007/s003380050152 CrossRefGoogle Scholar
  143. Torréton J-P, Dufour P (1996a) Temporal and spatial stability of bacterioplankton biomass and productivity in an atoll lagoon. Aquat Microb Ecol 11:251–261. https://doi.org/10.3354/ame011251 CrossRefGoogle Scholar
  144. Torréton J-P, Dufour P (1996b) Bacterioplankton production determined by DNA synthesis, protein synthesis, and frequency of dividing cells in Tuamotu atoll lagoon and surrounding ocean. Microb Ecol 32:185–202. https://doi.org/10.1007/BF00185887 CrossRefGoogle Scholar
  145. Torréton J-P, Pagès J, Dufour P et al (1997) Bacterioplankton carbon growth yield and DOC turnover in some coral reef lagoons. Proc 8th Int Coral Reef Sym 1:942–952Google Scholar
  146. Torréton J-P, Talbot V, Garcia N (2000) Nutrient stimulation of bacterioplankton growth in Tuamotu atoll lagoons. Aquat Microb Ecol 21:125–137. https://doi.org/10.3354/ame021125 CrossRefGoogle Scholar
  147. Torréton J-P, Pagès J, Talbot V (2002) Relationships between bacterioplankton and phytoplankton biomass, production and turnover rate in Tuamotu atoll lagoons. Aquat Microb Ecol 28:267–277. https://doi.org/10.3354/ame028267 CrossRefGoogle Scholar
  148. Torréton J-P, Rochelle-Newall E, Pringault O et al (2010) Variability of primary and bacterial production in a coral reef lagoon (New Caledonia). Mar Pollut Bull 61:335–348. https://doi.org/10.1016/j.marpolbul.2010.06.019 CrossRefGoogle Scholar
  149. Umezawa Y, Miyajima T, Kayanne H et al (2002a) Significance of groundwater nitrogen discharge into coral reefs at Ishigaki Island, southwest of Japan. Coral Reefs 21:346–335. https://doi.org/10.1007/s00338-002-0254-5 CrossRefGoogle Scholar
  150. Umezawa Y, Miyajima T, Yamamuro M et al (2002b) Fine-scale mapping of land-derived nitrogen in coral reefs by δ15N in macroalgae. Limnol Oceanogr 47:1405–1406. https://doi.org/10.4319/lo.2002.47.5.1405 CrossRefGoogle Scholar
  151. Vacelet E, Thomassin BA (1991) Microbial utilization of coral mucus in long term in situ incubation over a coral reef. Hydrobiologia 211:19–32. https://doi.org/10.1007/BF00008613 CrossRefGoogle Scholar
  152. Vacelet E, Arnoux A, Thomassin BA et al (1999) Influence of freshwater and terrigenous material on nutrients, bacteria and phytoplankton in a high island lagoon: Mayotte, Comoro Archipelago, Indian Ocean. Hydrobioligia 380:165–178. https://doi.org/10.1023/A:1003432829602 CrossRefGoogle Scholar
  153. van Duyl FC, Gast GJ (2001) Linkage of small-scale spatial variations in DOC, inorganic nutrients and bacterioplalnkton growth with different coral reef water types. Aquat Microb Ecol 24:17–26CrossRefGoogle Scholar
  154. Volkman JK, Tanoue E (2002) Chemical and biological studies of particulate organic matter in the ocean. J Oceanogr 58:265–279. https://doi.org/10.1023/A:1015809708632 CrossRefGoogle Scholar
  155. Wada S, Aoki MN, Tsuchiya Y et al (2007) Quantitative and qualitative analyses of dissolved organic matter released from Ecklonia cava Kjellman, in Oura Bay, Shimoda, Izu Peninsula, Japan. J Exp Mar Biol Ecol 349:344–358. https://doi.org/10.1016/j.jembe.2007.05.024 CrossRefGoogle Scholar
  156. Wada S, Aoki MN, Mikami A et al (2008) Bioavailability of macroalgal dissolved organic matter in seawater. Mar Ecol Prog Ser 370:33–44. https://doi.org/10.3354/meps07645 CrossRefGoogle Scholar
  157. Wada S, Omori Y, Kayamyo Y et al (2015) Photoreactivity of dissolved organic matter from macroalgae. Reg Stud Mar Sci 2:12–18. https://doi.org/10.1016/j.rsma.2015.08.018 CrossRefGoogle Scholar
  158. Watanabe A, Yamamoto T, Nadaoka K et al (2013) Spatiotemporal variations in CO2 flux in a fringing coral reef simulated using a novel carbonate system dynamics model. Coral Reefs 32:239–254. https://doi.org/10.1007/s00338-012-0964-2 CrossRefGoogle Scholar
  159. Wild C, Huettel M, Klueter A et al (2004a) Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature 428:66–70. https://doi.org/10.1038/nature02344 CrossRefGoogle Scholar
  160. Wild C, Rasheed M, Werner U et al (2004b) Degradation and mineralization of coral mucus in reef environments. Mar Ecol Prog Ser 267:159–171. https://doi.org/10.3354/meps267159 CrossRefGoogle Scholar
  161. Wild C, Woyt H, Huettel M (2005) Influence of coral mucus on nutrient fluxes in carbonate sands. Mar Ecol Prog Ser 287:87–98. https://doi.org/10.3354/meps287087 CrossRefGoogle Scholar
  162. Wild C, Niggl W, Naumann MS, Haas AF (2010) Organic matter release by Red Sea coral reef organisms – potential effects on microbial activity and in situ O2 availability. Mar Ecol Prog Ser 411:61–71. https://doi.org/10.3354/meps08653 CrossRefGoogle Scholar
  163. Wild C, Laforsch C, Mayr C et al (2012) Effect of water currents on organic matter release by two scleractinian corals. Aquat Ecol 46:335–341. https://doi.org/10.1007/s10452-012-9404-1 CrossRefGoogle Scholar
  164. Williams PM, Druffel ERM (1987) Radiocarbon in dissolved organic matter in the central North Pacific Ocean. Nature 330:246–248. https://doi.org/10.1038/330246a0 CrossRefGoogle Scholar
  165. Wyatt ASJ, Lowe RJ, Humphries S et al (2010) Particulate nutrient fluxes over a fringing coral reef: relevant scales of phytoplankton production and mechanisms of supply. Mar Ecol Prog Ser 405:113–130. https://doi.org/10.3354/meps08508 CrossRefGoogle Scholar
  166. Wyatt ASJ, Falter JL, Lowe RJ et al (2012) Oceanographic forcing of nutrient uptake and release over a fringing coral reef. Limnol Oceanogr 57:401–419. https://doi.org/10.4319/lo.2012.57.2.0401 CrossRefGoogle Scholar
  167. Wyatt ASJ, Lowe RJ, Humphries S et al (2013) Particulate nutrient fluxes over a fringing coral reef: source-sink dynamics inferred from carbon to nitrogen ratios and stable isotopes. Limnol Oceanogr 58:409–427. https://doi.org/10.4319/lo.2013.58.1.0409 CrossRefGoogle Scholar
  168. Yahel G, Sharp JH, Marie D et al (2003) In situ feeding and element removal in the symbiont-bearing sponge Theonella swinhoei: bulk DOC is the major source for carbon. Limnol Oceanogr 48:141–149. https://doi.org/10.4319/lo.2003.48.1.0141 CrossRefGoogle Scholar
  169. Yoshinaga I, Fukami K, Ishida Y (1991) Comparison of DNA and protein synthesis rates of bacterial assemblages between coral reef waters and pelagic waters in tropical ocean. Mar Ecol Prog Ser 76:167–174. https://doi.org/10.3354/meps076167 CrossRefGoogle Scholar
  170. Ziegler S, Benner R (1999) Dissolved organic carbon cycling in a subtropical seagrass-dominated lagoon. Mar Ecol Prog Ser 180:149–160. https://doi.org/10.3354/meps180149 CrossRefGoogle Scholar
  171. Ziegler S, Benner R (2000) Effects of solar radiation on dissolved organic matter cycling in a subtropical seagrass meadow. Limnol Oceanogr 45:257–266. https://doi.org/10.4319/lo.2000.45.2.0257 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Faculty of ScienceUniversiti Brunei DarussalamGadongBrunei Darussalam
  2. 2.Scripps Institution of OceanographyLa JollaUSA

Personalised recommendations