Skip to main content

Modeling and Simulation of a Wireless Passive Thermopneumatic Micromixer

Part of the Communications in Computer and Information Science book series (CCIS,volume 751)


This paper presents modeling and simulation of a wirelessly-controlled thermopneumatic zigzag micromixer. The micromixer is operated by selectively activating two passive wireless heaters with different resonant frequencies using an external magnetic field. Each heater is responsible for heating an air-heating chamber that is connected to a loading reservoir through a microdiffuser element, while the solutions pumped from each reservoir are mixed in a zigzag micromixing element that ends with an outlet hole. The performance of the micromixer is analyzed using finite element method, and mixing is investigated over a low range of Reynold’s number (Re) ⩽ 10 that is suitable various biomedical applications. The optimal activation switching time of the heaters is 10 s, at which the micromixer achieves a maximum mixing efficiency of ~96.1%, after ~65 s. The micromixer provides mixing-ratio controllability with a maximum flow rate and pressure drop of ~3.4 µL/min and ~385.22 Pa, respectively.


  • Finite element method
  • Microfluidic
  • Micromixer
  • Thermopneumatic
  • Wireless actuation

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. Maleki, T., Fricke, T., Quesenberry, J., Todd, P., Leary, J.F.: Point-of-care, portable microfluidic blood analyzer system. In: International Society for Optics and Photonics, Microfluidics, BioMEMS, and Medical Microsystems X, pp. 82510C-82513, California (2012)

    Google Scholar 

  2. Rajabi, N., Bahnemann, J., Tzeng, T.-N., Platas Barradas, O., Zeng, A.-P., Müller, J.: Lab-on-a-chip for cell perturbation, lysis, and efficient separation of sub-cellular components in a continuous flow mode. Sens. Actuators, A 215, 136–143 (2014)

    CrossRef  Google Scholar 

  3. Belliveau, N.M., Huft, J., Lin, P.J.C., Chen, S., Leung, A.K.K., Leaver, T.J., Wild, A.W., Lee, J.B., Taylor, R.J., Tam, Y.K., Hansen, C.L., Cullis, P.R.: Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol. Ther. -Nucl. Acids 1, 37 (2012)

    CrossRef  Google Scholar 

  4. Hossain, S., Kim, K.-Y.: Mixing analysis of passive micromixer with unbalanced three-split rhombic sub-channels. Micromachines 5, 913–928 (2014)

    CrossRef  Google Scholar 

  5. Lee, C.-Y., Chang, C.-L., Wang, Y.-N., Fu, L.-M.: Microfluidic mixing: a review. Int. J. Mol. Sci. 12, 3263–3287 (2011)

    CrossRef  Google Scholar 

  6. Li, X., Chang, H., Liu, X., Ye, F., Yuan, W.: A 3-D overbridge-shaped micromixer for fast mixing over a wide range of reynolds numbers. J. Microelectromech. Syst. 24, 1391–1399 (2015)

    CrossRef  Google Scholar 

  7. Nam-Trung, N., Zhigang, W.: Micromixers—a review. J. Micromech. Microeng. 15, R1 (2005)

    CrossRef  Google Scholar 

  8. Mengeaud, V., Josserand, J., Girault, H.H.: Mixing processes in a zigzag microchannel: finite element simulations and optical study. Anal. Chem. 74, 4279–4286 (2002)

    CrossRef  Google Scholar 

  9. Le Hai, T., Bao Quoc, T., Le Hoa, T., Tao, D., Trung Nguyen, T., Frank, K.: Geometric effects on mixing performance in a novel passive micromixer with trapezoidal-zigzag channels. J. Micromech. Microeng. 25, 094004 (2015)

    CrossRef  Google Scholar 

  10. Glasgow, I., Lieber, S., Aubry, N.: Parameters influencing pulsed flow mixing in microchannels. Anal. Chem. 76, 4825–4832 (2004)

    CrossRef  Google Scholar 

  11. Zhu, G.-P., Nguyen, N.-T.: Rapid magnetofluidic mixing in a uniform magnetic field. Lab Chip 12, 4772–4780 (2012)

    CrossRef  Google Scholar 

  12. Joung, Y.-H.: Development of implantable medical devices: from an engineering perspective. Int. Neurourol. J. 17, 98–106 (2013)

    CrossRef  Google Scholar 

  13. Mohamed Ali, M.S., Takahata, K.: Wireless microfluidic control with integrated shape-memory-alloy actuators operated by field frequency modulation. J. Micromech. Microeng. 21, 075005 (2011)

    CrossRef  Google Scholar 

  14. Smith, S., Tang, T.B., Terry, J.G., Stevenson, J.T.M., Flynn, B.W., Reekie, H.M., Murray, A.F., Gundlach, A.M., Renshaw, D., Dhillon, B., Ohtori, A., Inoue, Y., Walton, A.J.: Development of a miniaturised drug delivery system with wireless power transfer and communication. IET Nanobiotechnol. 1, 80–86 (2007)

    CrossRef  Google Scholar 

  15. Chee, P.S., Minjal, M.N., Leow, P.L., Mohamed Ali, M.S.: Wireless powered thermo-pneumatic micropump using frequency-controlled heater. Sens. Actuators A: Physical 233, 1–8 (2015)

    CrossRef  Google Scholar 

  16. Nafea, M., AbuZiater, A., Faris, O., Kazi, S., Mohamed Ali, M.S.: Selective wireless control of a passive thermopneumatic micromixer. In: 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 792–795. IEEE Press, Shanghai, China (2016)

    Google Scholar 

  17. Mohamed Ali, M.S., Takahata, K.: Frequency-controlled wireless shape-memory-alloy microactuators integrated using an electroplating bonding process. Sens. Actuators A: Physical 163, 363–372 (2010)

    CrossRef  Google Scholar 

  18. Chee, P.S., Nafea, M., Leow, P.L., Mohamed Ali, M.S.: Thermal analysis of wirelessly powered thermo-pneumatic micropump based on planar LC circuit. J. Mech. Sci. Technol. 30, 2659–2665 (2016)

    CrossRef  Google Scholar 

  19. Guo, L., Guvanasen, G.S., Liu, X., Tuthill, C., Nichols, T.R., DeWeerth, S.P.: A PDMS-based integrated stretchable microelectrode array (isMEA) for neural and muscular surface interfacing. IEEE Trans. Biomed. Circ. Syst. 7, 1–10 (2013)

    CrossRef  Google Scholar 

  20. Nafea, M., AbuZaiter, A., Kazi, S., Mohamed Ali, M.S.: Frequency-Controlled Wireless Passive Thermopneumatic Micromixer. J. Microelectromech. Syst. 26, 691–703 (2017)

    CrossRef  Google Scholar 

  21. Mohamed Ali, M.S., Abdullah, S.S., Osman, D.C.: Controllers optimization for a fluid mixing system using metamodeling approach. Int. J. Simul. Model. 8, 48–59 (2009)

    CrossRef  Google Scholar 

Download references


This work was supported by Research University Grant (10H40 & 14H31) from Universiti Teknologi Malaysia; and Fundamental Research Grant Scheme (FRGS) & Prototype Development Research Grant Scheme (PRGS) from Ministry of Higher Education Malaysia. M. Nafea acknowledges the financial support from the Malaysian Technical Cooperation Programme (MTCP).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mohamed Sultan Mohamed Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Nafea, M., Ahmad, N., Wahap, A.R., Mohamed Ali, M.S. (2017). Modeling and Simulation of a Wireless Passive Thermopneumatic Micromixer. In: Mohamed Ali, M., Wahid, H., Mohd Subha, N., Sahlan, S., Md. Yunus, M., Wahap, A. (eds) Modeling, Design and Simulation of Systems. AsiaSim 2017. Communications in Computer and Information Science, vol 751. Springer, Singapore.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6462-3

  • Online ISBN: 978-981-10-6463-0

  • eBook Packages: Computer ScienceComputer Science (R0)