Skip to main content

Modeling and Simulation of a Wireless Passive Thermopneumatic Micromixer

  • Conference paper
  • First Online:
Book cover Modeling, Design and Simulation of Systems (AsiaSim 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 751))

Included in the following conference series:

Abstract

This paper presents modeling and simulation of a wirelessly-controlled thermopneumatic zigzag micromixer. The micromixer is operated by selectively activating two passive wireless heaters with different resonant frequencies using an external magnetic field. Each heater is responsible for heating an air-heating chamber that is connected to a loading reservoir through a microdiffuser element, while the solutions pumped from each reservoir are mixed in a zigzag micromixing element that ends with an outlet hole. The performance of the micromixer is analyzed using finite element method, and mixing is investigated over a low range of Reynold’s number (Re) ⩽ 10 that is suitable various biomedical applications. The optimal activation switching time of the heaters is 10 s, at which the micromixer achieves a maximum mixing efficiency of ~96.1%, after ~65 s. The micromixer provides mixing-ratio controllability with a maximum flow rate and pressure drop of ~3.4 µL/min and ~385.22 Pa, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maleki, T., Fricke, T., Quesenberry, J., Todd, P., Leary, J.F.: Point-of-care, portable microfluidic blood analyzer system. In: International Society for Optics and Photonics, Microfluidics, BioMEMS, and Medical Microsystems X, pp. 82510C-82513, California (2012)

    Google Scholar 

  2. Rajabi, N., Bahnemann, J., Tzeng, T.-N., Platas Barradas, O., Zeng, A.-P., Müller, J.: Lab-on-a-chip for cell perturbation, lysis, and efficient separation of sub-cellular components in a continuous flow mode. Sens. Actuators, A 215, 136–143 (2014)

    Article  Google Scholar 

  3. Belliveau, N.M., Huft, J., Lin, P.J.C., Chen, S., Leung, A.K.K., Leaver, T.J., Wild, A.W., Lee, J.B., Taylor, R.J., Tam, Y.K., Hansen, C.L., Cullis, P.R.: Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol. Ther. -Nucl. Acids 1, 37 (2012)

    Article  Google Scholar 

  4. Hossain, S., Kim, K.-Y.: Mixing analysis of passive micromixer with unbalanced three-split rhombic sub-channels. Micromachines 5, 913–928 (2014)

    Article  Google Scholar 

  5. Lee, C.-Y., Chang, C.-L., Wang, Y.-N., Fu, L.-M.: Microfluidic mixing: a review. Int. J. Mol. Sci. 12, 3263–3287 (2011)

    Article  Google Scholar 

  6. Li, X., Chang, H., Liu, X., Ye, F., Yuan, W.: A 3-D overbridge-shaped micromixer for fast mixing over a wide range of reynolds numbers. J. Microelectromech. Syst. 24, 1391–1399 (2015)

    Article  Google Scholar 

  7. Nam-Trung, N., Zhigang, W.: Micromixers—a review. J. Micromech. Microeng. 15, R1 (2005)

    Article  Google Scholar 

  8. Mengeaud, V., Josserand, J., Girault, H.H.: Mixing processes in a zigzag microchannel: finite element simulations and optical study. Anal. Chem. 74, 4279–4286 (2002)

    Article  Google Scholar 

  9. Le Hai, T., Bao Quoc, T., Le Hoa, T., Tao, D., Trung Nguyen, T., Frank, K.: Geometric effects on mixing performance in a novel passive micromixer with trapezoidal-zigzag channels. J. Micromech. Microeng. 25, 094004 (2015)

    Article  Google Scholar 

  10. Glasgow, I., Lieber, S., Aubry, N.: Parameters influencing pulsed flow mixing in microchannels. Anal. Chem. 76, 4825–4832 (2004)

    Article  Google Scholar 

  11. Zhu, G.-P., Nguyen, N.-T.: Rapid magnetofluidic mixing in a uniform magnetic field. Lab Chip 12, 4772–4780 (2012)

    Article  Google Scholar 

  12. Joung, Y.-H.: Development of implantable medical devices: from an engineering perspective. Int. Neurourol. J. 17, 98–106 (2013)

    Article  Google Scholar 

  13. Mohamed Ali, M.S., Takahata, K.: Wireless microfluidic control with integrated shape-memory-alloy actuators operated by field frequency modulation. J. Micromech. Microeng. 21, 075005 (2011)

    Article  Google Scholar 

  14. Smith, S., Tang, T.B., Terry, J.G., Stevenson, J.T.M., Flynn, B.W., Reekie, H.M., Murray, A.F., Gundlach, A.M., Renshaw, D., Dhillon, B., Ohtori, A., Inoue, Y., Walton, A.J.: Development of a miniaturised drug delivery system with wireless power transfer and communication. IET Nanobiotechnol. 1, 80–86 (2007)

    Article  Google Scholar 

  15. Chee, P.S., Minjal, M.N., Leow, P.L., Mohamed Ali, M.S.: Wireless powered thermo-pneumatic micropump using frequency-controlled heater. Sens. Actuators A: Physical 233, 1–8 (2015)

    Article  Google Scholar 

  16. Nafea, M., AbuZiater, A., Faris, O., Kazi, S., Mohamed Ali, M.S.: Selective wireless control of a passive thermopneumatic micromixer. In: 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 792–795. IEEE Press, Shanghai, China (2016)

    Google Scholar 

  17. Mohamed Ali, M.S., Takahata, K.: Frequency-controlled wireless shape-memory-alloy microactuators integrated using an electroplating bonding process. Sens. Actuators A: Physical 163, 363–372 (2010)

    Article  Google Scholar 

  18. Chee, P.S., Nafea, M., Leow, P.L., Mohamed Ali, M.S.: Thermal analysis of wirelessly powered thermo-pneumatic micropump based on planar LC circuit. J. Mech. Sci. Technol. 30, 2659–2665 (2016)

    Article  Google Scholar 

  19. Guo, L., Guvanasen, G.S., Liu, X., Tuthill, C., Nichols, T.R., DeWeerth, S.P.: A PDMS-based integrated stretchable microelectrode array (isMEA) for neural and muscular surface interfacing. IEEE Trans. Biomed. Circ. Syst. 7, 1–10 (2013)

    Article  Google Scholar 

  20. Nafea, M., AbuZaiter, A., Kazi, S., Mohamed Ali, M.S.: Frequency-Controlled Wireless Passive Thermopneumatic Micromixer. J. Microelectromech. Syst. 26, 691–703 (2017)

    Article  Google Scholar 

  21. Mohamed Ali, M.S., Abdullah, S.S., Osman, D.C.: Controllers optimization for a fluid mixing system using metamodeling approach. Int. J. Simul. Model. 8, 48–59 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Research University Grant (10H40 & 14H31) from Universiti Teknologi Malaysia; and Fundamental Research Grant Scheme (FRGS) & Prototype Development Research Grant Scheme (PRGS) from Ministry of Higher Education Malaysia. M. Nafea acknowledges the financial support from the Malaysian Technical Cooperation Programme (MTCP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Sultan Mohamed Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Nafea, M., Ahmad, N., Wahap, A.R., Mohamed Ali, M.S. (2017). Modeling and Simulation of a Wireless Passive Thermopneumatic Micromixer. In: Mohamed Ali, M., Wahid, H., Mohd Subha, N., Sahlan, S., Md. Yunus, M., Wahap, A. (eds) Modeling, Design and Simulation of Systems. AsiaSim 2017. Communications in Computer and Information Science, vol 751. Springer, Singapore. https://doi.org/10.1007/978-981-10-6463-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6463-0_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6462-3

  • Online ISBN: 978-981-10-6463-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics