Skip to main content

A New Approach to Dense Spectrum Analysis of Infrasonic Signals

  • Conference paper
  • First Online:
  • 2518 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 727))

Abstract

Spectrum analysis is very important in geological hazards of infrasonic signal observation systems. The spectrum of infrasonic signal is a dense spectrum which can leads to potential erroneous spectrum analysis. Hereby we propose a dense spectrum analysis algorithm combining all phase Fast Fourier Transform (apFFT) and Chirp Z-transform (CZT) to analyse dense low frequency signal. This is called all phase Chirp Z transform (apCZT). The apFFT spectrum analysis can reduce spectrum leakage, but does not enhance resolution while the CZT vice versa. The novel algorithm apCZT can suppress spectral leakage and improve the resolution at the same time. Simulation results demonstrate that the apCZT algorithm can distinguish the frequencies whose intervals are less than the ordinary frequency resolving power of Discrete Fourier Transform (DFT) and apFFT. The apCZT it is not only suitable for infrasonic signals but also in other dense spectrum analysis applications, such as voice, vibration, noise, electrocardiography, radar signals, power system harmonics and other engineering practice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jain, V.K., Collins, W.L., Davis, D.C.: High-accuracy analog measurements via interpolated FFT. IEEE Trans. Instrum. Meas. 28, 113–122 (1979). doi:10.1109/TIM.1979.4314779

    Article  Google Scholar 

  2. Chen, K.F., Li, Y.F.: Combining the Hanning windowed interpolated FFT in both directions. Comput. Phys. Commun. 178(12), 924–928 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Renders, H., Schoukens, J., Vilain, G.: High-accuracy spectrum analysis of sampled discrete frequency signals by analytical leakage compensation. IEEE Trans. Instrum. Meas. 33, 287–292 (1984). doi:10.1109/TIM.1984.4315226

    Article  Google Scholar 

  4. Diao, R., Meng, Q.: Frequency estimation by iterative interpolation based on leakage compensation. Measurement 59, 44–50 (2015)

    Article  Google Scholar 

  5. Wang, Q., Xiao, Y., Kaiyu, Q.: Parameters estimation algorithm for the exponential signal by the interpolated all-phase DFT approach. In: IEEE 2014, pp. 37–41 (2014). doi:10.1109/ICCWAMTIP.2014.7073356

  6. Rabiner, L.R., Schafer, R.W., Rader, C.M.: The chirp z-transform algorithm. IEEE Trans. Audio Electroacoust. 17, 86–92 (1969). doi:10.1109/TAU.1969.1162034

    Article  Google Scholar 

  7. Wu, G.Q., Wang, Z.H., Huang, X.H.: All phase correction method for discrete spectrum. Data Acquis. Process. 20, 287–290 (2005)

    Google Scholar 

  8. Oppenheim, A.V., Schafer, R.W., Buck, J.R.: Discrete-Time Signal Processing, vol. 2. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  9. Mostarac, P., Malarić, R., Hegeduš, H.: Adaptive chirp transform for frequency measurement. Measurement 45, 268–275 (2012). doi:10.1016/j.measurement.2011.12.005

    Article  Google Scholar 

  10. Ma, T.N., Takaya, K.: High-resolution NMR chemical-shift imaging with reconstruction by the chirp Z-transform. IEEE Trans. Med. Imaging 9, 190–201 (1990). doi:10.1109/42.56344

    Article  Google Scholar 

  11. Lanari, R.: A new method for the compensation of the SAR range cell migration based on the chirp Z-transform. IEEE Trans. Geosci. Remote Sens. 33, 1296–1299 (1995). doi:10.1109/36.469496

    Article  Google Scholar 

  12. Aiello, M., Cataliotti, A., Nuccio, S.: A chirp-Z transform-based synchronizer for power system measurements. IEEE Trans. Instrum. Meas. 54, 1025–1032 (2005). doi:10.1109/TIM.2005.847243

    Article  Google Scholar 

  13. Smith, J.O.: Mathematics of the Discrete Fourier Transform (DFT): With Audio Applications. Julius Smith (2007)

    Google Scholar 

  14. Kogelnig, A., Hübl, J., Suriñach, E., et al.: Infrasound produced by debris flow: propagation and frequency content evolution. Nat. Hazards 70, 1713–1733 (2014). doi:10.1007/s11069-011-9741-8

    Article  Google Scholar 

Download references

Acknowledgement

This work is financially supported by the National Natural Science Foundation of China (Grant Nos. 41374185 and 41572347), the Fundamental Research Funds for the Central Universities (Excellent Instructors Fund, Grant No. 2652016139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Xing, K., Hao, K., Li, M. (2017). A New Approach to Dense Spectrum Analysis of Infrasonic Signals. In: Zou, B., Li, M., Wang, H., Song, X., Xie, W., Lu, Z. (eds) Data Science. ICPCSEE 2017. Communications in Computer and Information Science, vol 727. Springer, Singapore. https://doi.org/10.1007/978-981-10-6385-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6385-5_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6384-8

  • Online ISBN: 978-981-10-6385-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics