Skip to main content

Application of Acoustic Metamaterial to Time-Reversal Acoustics

  • Chapter
  • First Online:
  • 1403 Accesses

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Time reversal acoustics is based on the time reversal symmetry of the acoustic fields. A detailed description of the acoustic field equation showing the time reversal symmetry property of S the solution is given. A geometric structure of a metamaterial for both an electromagnetic wave and acoustic wave is given. Then, the geometric structure of the metamaterial to implement time reversal acoustics is given. Time reversal acoustics has been successfully applied to non-destructive testing, medical ultrasound imaging, and underwater acoustics. The advantage of using metamaterial in time reversal acoustics is that it supports modes which radiate spatial information of the near field of a source efficiently in the far field.

This is a preview of subscription content, log in via an institution.

References

  1. Morse, P.N., Ingard, K.U.: Theoretical Acoustics. McGraw-Hill, New York (1968)

    Google Scholar 

  2. Nieto-Vesperinasand, M., Wolf, E.: Phase conjugation and symmetries with wave fields in free space containing evanescent components. J. Opt. Soc. Am. 2(9), 1429–1434 (1985)

    Google Scholar 

  3. Fink, M., Prada, C., Wu, F., Cassereau, D.: Selffocusing with time reversal mirror in inhomogeneous media. In: 1989 Proceedings IEEE Ultrasonic Symposium 1989, vol. 2, pp. 681–686. Montreal, PQ, Canada

    Google Scholar 

  4. Flax, S.W., O’Donnell, M.: Phase aberration correction using signals from point reflectors and diffuse scatterers: basic principles. IEEE Trans. Ultrason., Ferroelectr. Freq. Control 35, 758–767(1988)

    Google Scholar 

  5. O’Donnell, M., Flax, S.W.: Phase aberration correction using signals from point reflectors and diffuse scatterers: measurements. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35, 768–774 (1988)

    Google Scholar 

  6. Nock, L., Trahey, G.E., Smith, S.W.: Phase aberration correction in medical ultrasound using speckle brightness as a quality factor. J. Acoust. Soc. Am. 85, 1819–1833 (1989)

    Article  Google Scholar 

  7. Mallart, R., Fink, M.: Sound speed fluctuations in medical ultrasound imaging. Comparison between different correction algorithms. In: Proceedings of the 19th International Symposium Acoustical Imaging (1991)

    Google Scholar 

  8. Mallart, R., Fink, M.: The Van Cittert-Zernike theorem in pulse-echomeasurements. J. Acoust. Soc. Am. 90(5), 2718–2727 (1991)

    Google Scholar 

  9. Trahey, E., Zhao, D., Miglin, J.A., Smith, S.W.: Experimental results with a real-time adaptive ultrasonic imaging system for viewing through distorting media. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 418–429 (1990)

    Google Scholar 

  10. Porter, R.P., Devaney, A.J.: Generalized holography and the inverse source problems. J. Opt. Soc. Am. 72, 327–330 (1982)

    Article  Google Scholar 

  11. Cassereau, D., Wu, F., Fink, M.: Limits of self-focusing using closed time-reversal cavities and mirrors-theory and experiment. In: 1990 Proceedings IEEE Ultrasonics Symposium, Hawaii, pp. 1613–1618 (1990)

    Google Scholar 

  12. Cassereau, D., Fink, M.: Time-reversal of ultrasonic fields, III. Theory of the closed time-reversal cavity. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 579–592 (1992)

    Google Scholar 

  13. Kino, G.S.: Acoustics Waves, Signal Processing Series. PrenticeHall, Englewood Cliffs, NJ (1987)

    Google Scholar 

  14. Wu, F., Thomas J.L., Fink, M.: Timereversal of ultrasonic fields-part 11: experimental results. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 567–578 (1992)

    Google Scholar 

  15. Papoulis, A.: Signal Analysis. McGraw-Hill, New York (1984)

    Google Scholar 

  16. Prada, C., Wu, F., Fink, M.: The iterative time reversal mirror: a solution to selffocusing in pulse-echo mode. J. Acoust. Soc. Am. 90, 1119–1129 (1991)

    Article  Google Scholar 

  17. Prada, C.: Retournement temporal des ondes ultrasonores. These de doctorat de I’Universite Paris VII (1991)

    Google Scholar 

  18. Lerosey, G., et al.: Focusing beyond the diffraction limit with far field time reversal. Science 315, 1120–1122 (2007)

    Article  Google Scholar 

  19. Smith, D.R.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000)

    Article  Google Scholar 

  20. Lemoult, F., Fink, M., Lerosey, G.: Acoustic resonators for far field control of sound on a subwavelength scale. Phys. Rev. Lett. 107, 064301 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woon Siong Gan .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gan, W.S. (2018). Application of Acoustic Metamaterial to Time-Reversal Acoustics. In: New Acoustics Based on Metamaterials. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6376-3_9

Download citation

Publish with us

Policies and ethics