Skip to main content

Negative Refraction and Acoustical Cloaking

  • Chapter
  • First Online:
Book cover New Acoustics Based on Metamaterials

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 1359 Accesses

Abstract

Negative refraction is not only the consequence of the negative mass density and negative bulk modulus of the acoustical metamaterial but also can produce phononic crystal’s band gap. Acoustical cloaking is an application of the form invariance of the acoustic field equation. It is the first application of sound propagation in curvilinear space-time. It enables the bending and the manipulation of the direction of the sound wave to our requirement. Both negative refraction and acoustical cloaking can be derived from coordinates transformation of the acoustic field equation. In fact, negative refraction is a special case of acoustical cloaking when the value of the determinant of the coordinates transformation equals -1. Negative refraction enables the production of super-resolution lens and acoustical cloaking can be used for shielding objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Veselago, V.G.: The electrodynamics of substances with simultaneous negative values of ε and μ. Sov. Phys. Usp. 10(4), 509 (1968)

    Article  Google Scholar 

  2. Mandel’stam, L.I.: JETP 15, 475 (1945)

    Google Scholar 

  3. Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Magnetism from conductors and enhanced non-linear phenomena. IEEE Trans. Microw. Theory Techn. 47(11), 2075–2984 (1999)

    Article  Google Scholar 

  4. Shelby, R.A., Smith, D.R., Schultz, S.: Experimental evidence of a negative index of refraction. Science 292(5514), 77 (2001)

    Article  Google Scholar 

  5. Gan, W.S.: Gauge invariance approach to acoustic fields. In: Akiyama, I. (ed.) Acoustical Imaging, vol. 29, pp. 389–394. Springer, Dordrecht (2007)

    Chapter  Google Scholar 

  6. Cummer, S.A., Schurig, D.: One path to acoustic cloaking. New J. Phys. 9, 45 (2007)

    Article  Google Scholar 

  7. Korringa, J.: Physica (Amsterdam) XIII, 392 (1947)

    Article  Google Scholar 

  8. Kohn, W., Rostoker, N.: Phys. Rev. 94, 1111 (1951)

    Article  Google Scholar 

  9. Liu, Z., Chan, C.T., Sheng, P., Goertzen, A.L., Page, J.H.: Elastic wave scattering by periodic structures of spherical objects: theory and experiment. Phys. Rev. B 62(4), 2446–2457 (2000)

    Article  Google Scholar 

  10. Sigalas, M.M., Economou, E.N.: J. Sound Vib. 158, 377 (1992)

    Article  Google Scholar 

  11. Kushwaha, M.S., Halevi, P., Dobrzynski, L., Djafrari-Rouhani, B.: Phys. Rev. Lett. 71, 2022 (1993)

    Article  Google Scholar 

  12. Sanchez-Perez, J.V., Caballero, D., Martinez-Sala, R., Rubio, C., Sanchez-Dehesa, J., Meseguer, F.: Phys. Rev. Lett. 80, 5325 (1998)

    Article  Google Scholar 

  13. Kafesaki, M., Economou, E.N.: Phys. Rev. B 52, 13317 (1995)

    Article  Google Scholar 

  14. Yang, S., et al.: Phys. Rev. Lett. 88, 104301 (2002)

    Article  Google Scholar 

  15. Wolfe, J.P.: Imaging Phonons: Acoustic Wave Propagation in Solids. Cambridge University Press, Cambridge, England (1998)

    Book  Google Scholar 

  16. Liu, Z., et al.: Phys. Rev. B 62, 2446 (2000)

    Article  Google Scholar 

  17. Zhang, X., Liu, Z.: Negative refraction of acoustic waves in two-dimensional phononic crystals. Appl. Phys. Lett. 85(2), 341–343 (2004)

    Article  Google Scholar 

  18. Luo, C., Johnson, S.G., Joannopoulos, J.D.: Appl. Phys. Lett. 83, 2352 (2002)

    Article  Google Scholar 

  19. Lai, Y., Zhang, X., Zhang, Z.Q.: Appl. Phys. Lett. 79, 3224 (2001)

    Article  Google Scholar 

  20. Pendry, J.B.: Phys. Rev. Lett. 85, 3966 (2000)

    Article  Google Scholar 

  21. Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F., Smith, D.R.: Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006)

    Article  Google Scholar 

  22. Luo, C., Johnson, S.G., Joannopuolos, J.D., Pendry, J.B.: Phys. Rev. B 65, 201104 (2002)

    Article  Google Scholar 

  23. Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science 312, 1780–1782 (2006)

    Article  Google Scholar 

  24. Milton, G.W., Briane, M., Willis, J.R.: On cloaking for elasticity and physical equations with a transformation invariant form. New J. Phys. 8, 248 (2006)

    Article  Google Scholar 

  25. Cummer, S.A., Raleigh, M., Schurig, D.: New J. Phys. 10, 115025–115034 (2008)

    Article  Google Scholar 

  26. Cummer, S.A., Rahm, M., Schurig, D.: Material parameters and vector scaling in transformation acoustics. New J. Phys. 10, 115025 (2008)

    Article  Google Scholar 

  27. Cummer, S.A., et al.: Scattering theory derivation of a 3D acoustic cloaking shell. Phys. Rev. Lett. 100, 024301 (2008)

    Article  Google Scholar 

  28. Chen, H., Chan, C.T.: Acoustic cloaking in three dimensions using acoustic metamaterials. Appl. Phys. Lett. 91, 183518 (2007)

    Article  Google Scholar 

  29. Greenleaf, A., Kurylev, Y., Lassas, M., Uhlmann, G.: Comment on “Scattering derivation of a 3D acoustic cloaking shell” (2008)

    Google Scholar 

  30. Lee, S.H., Kim, C.K., Park, C.M., Seo, Y.M., Wang, Z.G.: Composite acoustic medium with simultaneously negative density and modulus. In: Proceedings of ICSV17 (2010)

    Google Scholar 

  31. Cheng, Y., Xu, J.Y., Liu, X.J.: One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus. Phys. Rev. B 77, 045134 (2008)

    Article  Google Scholar 

  32. Greenleaf, A., et al.: Anistropic conductivities that cannot be detected by EIT. Physiol. Meas. 24, 413–419 (2003)

    Google Scholar 

  33. Yang, S., Page, J.H., Liu, Z., Cowan, M.L., Chan, C.T., Sheng, P.: Focusing of Sound in a 3D Phononic Crystal. Phys. Rev. Lett. 93(2), 024301-1–024301-4 (2004)

    Article  Google Scholar 

  34. Hu, J., Zhou, X., Hu, G.: A numerical method for designing acoustic cloak with arbitrary shapes, Comput. Mater. Sci. 46, 708–712 (2009)

    Google Scholar 

  35. Akl, W. Elnady, T., Elsabbagh, A.: Improving acoustic cloak bandwidth using nonlinear coordinate transformations. In: Proceedings of ICSV17 (2010)

    Google Scholar 

  36. Fang, N., Zhang, S.: Phys. Rev. Lett. (2009)

    Google Scholar 

  37. Thurston, R.N., Shapiro, M.J.: J. Acoust. Soc. Am. 41, 1112 (1967)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woon Siong Gan .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gan, W.S. (2018). Negative Refraction and Acoustical Cloaking. In: New Acoustics Based on Metamaterials. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6376-3_2

Download citation

Publish with us

Policies and ethics