Pinched Hysteresis Loop Characteristics of a Fractional-Order HP \(\mathrm{TiO_2}\) memristor

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 762)

Abstract

A memristor is a nonlinear resistor with time memory. Usually, the memory without any loss is an ideal case. Recent studies show that there is a memory loss of the classic HP \(\mathrm{TiO_2}\) linear model, which has memory effect between no memory and ideal memory (complete memory). To describe the memory property, we propose a fractional-order HP \(\mathrm{TiO_2}\) memristor model with the order \(\alpha \) between 0 and 1, and the pinched hysteresis loop characteristics are studied as the fractional-order model under periodic external excitation. Compared with the classic integer-order memristor model, numerical simulations show that the fractional-order derivative \(\alpha \) is also an important parameter effects the pinched hysteresis loop area, the memristor value and the output voltage amplitude evidently and regularly.

Keywords

Fractional calculus Memory Fractional-order memristor Pinched hysteresis loop 

References

  1. 1.
    Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)CrossRefGoogle Scholar
  2. 2.
    Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)CrossRefGoogle Scholar
  4. 4.
    Chua, L.O.: Nonlinear circuit foundations for nanodevices. I. The four-element torus. Proc. IEEE 91(11), 1830–1859 (2003)CrossRefGoogle Scholar
  5. 5.
    Adhikari, S.P., Sah, M.P., Kim, H., Chua, L.O.: Three fingerprints of memristor. IEEE Trans. Circ. Syst. I, Reg. Pap. 60(11), 3008–3021 (2013)CrossRefGoogle Scholar
  6. 6.
    Corinto, F., Ascoli, A.: Memristive diode bridge with LCR filter. Electron. Lett. 48(14), 824–825 (2012)CrossRefGoogle Scholar
  7. 7.
    Di Ventra, M., Pershin, Y.V.: On the physical properties of memristive, memcapacitive and meminductive systems. Nanotechnology 24 (2013). Article no. 255201Google Scholar
  8. 8.
    Ebong, I.E., Mazumder, P.: CMOS and memristor-based neural network design for position detection. Proc. IEEE 100(6), 2050–2060 (2012)CrossRefGoogle Scholar
  9. 9.
    Crupi, M., Pradhan, L., Tozer, S.: Modelling neural plasticity with memristors. IEEE Can. Rev. 68, 10–14 (2012)Google Scholar
  10. 10.
    Di Ventra, M., Pershin, Y.V., Chua, L.O.: Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc. IEEE 97(10), 1717–1723 (2009)CrossRefGoogle Scholar
  11. 11.
    Niu, D., Chen, Y., Xie, Y.: Low-power dual-element memristor based memory design. In: Proceedings of the 16th ACM/IEEE International Symposium on Low Power Electronics and Design, pp. 25–30 (2010)Google Scholar
  12. 12.
    Ho, Y., Huang, G.M., Li, P.: Nonvolatile memristor memory: device characteristics and design implications. In: Proceedings of the 2009 International Conference on Computer-Aided Design, pp. 485–490 (2009)Google Scholar
  13. 13.
    Itoh, M., Chua, L.O.: Memristor oscillators. Int. J. Bifurcat. Chaos 18(11), 3183–3206 (2008)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Muthuswamy, B., Kokate, P.P.: Memristor-based chaotic circuits. IEEE Tech. Rev. 26(6), 415–426 (2009)Google Scholar
  15. 15.
    Bao, B., Ma, Z., Xu, J., Liu, Z., Xu, Q.: A simple memristor chaotic circuit with complex dynamics. Int. J. Bifurcat. Chaos 21(9), 2629–2645 (2011)CrossRefMATHGoogle Scholar
  16. 16.
    Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic, San Diego (1998)MATHGoogle Scholar
  17. 17.
    Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic, New York (1974)MATHGoogle Scholar
  18. 18.
    Butzer, P.L.: An introduction to fractional calculus. In: Butzer, P.L., Westphal, U. (eds.) Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)Google Scholar
  19. 19.
    Caponetto, R., Dongola, G., Luigi, F., Ivo, P.: Fractional order systems: modeling and control applications. Academic, World Scientific, New Jersey (2010)CrossRefGoogle Scholar
  20. 20.
    Chen, Y., Vinagre, B.M.: A new IIR-type digital fractional order differentiator. Sign. Process. 83(11), 2359–2365 (2011)CrossRefMATHGoogle Scholar
  21. 21.
    Elwakil, A.S.: Fractional-order circuits and systems: an emerging interdisciplinary research area. IEEE Circ. Syst. Mag. 10(4), 40–50 (2010)CrossRefGoogle Scholar
  22. 22.
    Freeborn, T.J.: A survey of fractional-order circuit models for biology and biomedicine. IEEE J. Emerg. Sel. Topics Circ. Syst. 3(3), 416–424 (2013)CrossRefGoogle Scholar
  23. 23.
    Radwan, A.G., Moaddy, K., Hashim, I.: Amplitude modulation and synchronization of fractional-order memristor-based Chua’s circuit. Abstract Appl. Anal. (2013). Article no. 758676Google Scholar
  24. 24.
    Machado, J.T.: Fractional generalization of memristor and higher order elements. Commun. Nonlinear Sci. Numer. Simul. 18(2), 264–275 (2013)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Abdelouahab, M.S., Lozi, R., Chua, L.: Memfractance: a mathematical paradigm for circuit elements with memory. Int. J. Bifurcation Chaos 24 (2014). Article no. 1430023Google Scholar
  26. 26.
    Pu, Y.F., Yuan, X.: Fracmemristor: fractional-order memristor. IEEE Access 4, 1872–1888 (2016)CrossRefGoogle Scholar
  27. 27.
    Pershin, Y.V., Di Ventra, M.: Memory effects in complex materials and nanoscale systems. Adv. Phys. 60(2), 145–227 (2011)CrossRefGoogle Scholar
  28. 28.
    Rezazadeh, H., Aminikhah, H., Sheikhani, A.H.R.: Analytical studies for linear periodic systems of fractional order. Math. Sci. 10(1–2), 13–21 (2016)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Sun, J., Yao, L., Zhang, X., Wang, Y., Cui, G.: Generalised mathematical model of memristor. IET Circ. Devices Syst. 10(3), 244–249 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Advanced TechnologyNanjing University of Posts and TelecommunicationsNanjingPeople’s Republic of China
  2. 2.Hubei Province Collaborative Innovation Center for New Energy MicrogridChina Three Gorges UniversityYichangPeople’s Republic of China

Personalised recommendations