Skip to main content

Definitions and Motivations

  • Chapter
  • First Online:

Part of the book series: Developments in Mathematics ((DEVM,volume 52))

Abstract

The concept of generalized inverses seems to have been first mentioned in print in 1903 by Fredholm [1] who formulated a pseudoinverse for a linear integral operator which is not invertible in the ordinary sense.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fredholm, I.: Sur une classe d’equations fonctionnelles. Acta. Math. 27, 365–390 (1903)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hilbert, D.: Grundzüuge einer algemeinen Theorie der linearen Integralgleichungen, B. G. Teubner, Leipzig and Berlin, 1912, (Reprint of six articles which appeared originally in the Götingen Nachrichten (1904), 49–51; (1904), 213–259; (1905), 307–338; (1906), 157–227; (1906), 439–480; (1910), 355–417)

    Google Scholar 

  3. Hurwitz, W.A.: On the pseudo-resolvent to the kernel of an integral equation. Trans. Am. Math. Soc. 13, 405–418 (1912)

    MathSciNet  MATH  Google Scholar 

  4. Moore, E.H.: General Analysis. American Philosophical Society, Philadelphia (1935)

    MATH  Google Scholar 

  5. Moore, E.H.: On the reciprocal of the general algebraic matrix (abstract). Bull. Am. Math. Soc. 26, 394–395 (1920)

    Google Scholar 

  6. Siegel, C.L.: Uber die analytische Theorie der quadratischen Formen III. Ann. Math. 38, 212–291 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  7. Siegel, C.L.: Equivalence of quadratic forms. Am. J. Math. 63, 658–680 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  8. Tseng, Y.Y.: Generalized inverses of unbounded operators between two unitary spaces. Dokl. Akad. Nauk. SSSR. 67, 431–434 (1949)

    MathSciNet  Google Scholar 

  9. Tseng, Y.Y.: Properties and classifications of generalized inverses of closed operators. Dokl. Akad. Nauk. SSSR 67, 607–610 (1949)

    MathSciNet  Google Scholar 

  10. Tseng, Y.Y.: Virtual solutions and general inversions. Uspehi. Mat. Nauk. 11, 213–215 (1956)

    MathSciNet  Google Scholar 

  11. Murray, F.J., von Neumann, J.: On rings of operators. Ann. Math. 37, 116–229 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  12. Atkinson, F.V.: The normal solvability of linear equations in normed spaces (russian), Mat. Sbornik N.S. 28(70), 3–14 (1951)

    Google Scholar 

  13. Atkinson, F.V.: On relatively regular operators. Acta Sci. Math. Szeged 15, 38–56 (1953)

    MathSciNet  MATH  Google Scholar 

  14. Bjerhammer, A.: Application of the calculus of matrices to the method of least squares with special reference to geodetic calculations, Kungl. Tekn. H11gsk. Hand. Stockholm. 49, 1–86 (1951)

    Google Scholar 

  15. Bjerhammer, A.: Rectangular reciprocal matrices with special reference to geodetic calculations. Bull. Geodesique 52, 188–220 (1951)

    Article  MathSciNet  Google Scholar 

  16. Penrose, R.: A generalized inverse for matrices. Proc. Cambridge Philos. Soc. 51, 466–413 (1955)

    Article  MATH  Google Scholar 

  17. Rao, C.R.: Analysis of dispersion for multiply classified data with unequal numbers in cells. Sankhyd. 15, 253–280 (1955)

    MathSciNet  MATH  Google Scholar 

  18. Reid, W.T.: Generalized Green’s matrices for compatible systems of differential equations. Am. J. Math. 53, 443–459 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bradley, J.S.: Adjoint quasi-differential operators of Euler type. Pacific J. Math. 16, 213–237 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bradley, J.S.: Generalized Green’s matrices for compatible differential systems. Michigan Math. J. 13, 97–108 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kammerer, W.J., Nashed, M.Z.: Iterative methods for best approximate solutions of linear integral equations of the first and second kinds. J. Math. Anal. Appl. 40, 547–573 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nashed, M.Z.: On moment-discretization and least-squares solutions of linear integral equations of the first kind. J. Math. Anal. Appl. 53, 359–366 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kunkel, P., Mehrmann, V.: Generalized inverses of differential-algebraic operators. SIAM J. Matrix Anal. Appl. 17, 426–442 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gaarder, N.T., Herman, G.T.: Algorithms for reproducing objects from their x-rays. Comput. Graphics Image Process. 1, 97–106 (1972)

    Article  Google Scholar 

  25. Gordon R., Herman G.T.: Reconstruction of pictures from their projections. Commun. ACM. 14, 759–768 (1971)

    Google Scholar 

  26. Herman, G.T.: Two direct methods for reconstructing pictures from their projections. Comput. Graphics Image Process. 1, 123–143 (1972)

    Article  Google Scholar 

  27. Krishan, S., Prabhu, S.S., Krishnamurthy, E.V.: Probabilistie reinforcement algorithms lot reconsh-uction of pictures from their projections. Int. J. Syst. Sci. 4, 661–670 (1973)

    Article  Google Scholar 

  28. Krishnamurthy, E.V.: Mahadeva, R.T., Subramanian, K., Prabhu, S.S.: Reconstruction of objects from their projections using generalized inverses. Comput. Graphics Image Process. 3, 336–345 (1974)

    Google Scholar 

  29. Rieder, A., Schuster, T.: The approximate inverse in action with an application to computerized tomography SIAM. J. Numer. Anal. 37(6), 1909–1929 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Laura, A.M., Conde, C.: Generalized inverses and sampling problems. J. Math. Anal. Appl. 398(2), 744–751 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, G., Guo, D.: One-way property proof in public key cryptography based on OHNN. Proc. Eng. 15, 1812–1816 (2011)

    Article  Google Scholar 

  32. Radhakrishin, C.R.: A note on a generalized inverse of a matrix with applications to problems in mathematical statistics. J. R. Stat. Soc. Ser. B. 24, 152–158 (1962)

    MathSciNet  Google Scholar 

  33. Radhakrishin, C.R.: Generalized inverse for matrices and its applications in mathematical statistics. Research papers in Statistics. Festschrift for J. Neyman. Wiley, New York (1966)

    Google Scholar 

  34. Radhakrishin, C.R.: Least squares theory using an estimated dispersion matrix and its application to measurement of signals. In: Proceedings of the Fifth Berkeley Symposium on Statistics and Probability, Berkeley and Los Angeles, University of California Press, vol. 1, pp. 355–372 (1967)

    Google Scholar 

  35. Chipman, J.S.: Specification problems in regression analysis, Theory and Application of Generalized Inverses and Matrices, Symposium Proceedings. Texas Technological College. Mathematics Series 4, 114–176 (1968)

    Google Scholar 

  36. Bose, R. C.: Analysis of Variance, unpublished lecture notes, University of North Carolina (1959)

    Google Scholar 

  37. Campbell, S.L., Meyer, C.D.: Generalized Inverse of Linear Transformations, Pitman, London (1979). Dover, New York (1991)

    Google Scholar 

  38. Anderson Jr., W.N., Duffin, R.J., Trapp, G.E.: Matrix operations induced by network connections. SIAM J. Control 13, 446–461 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  39. Akatsuka, Y., Matsuo, T.: Optimal control of linear discrete systems using the generalized inverse of a matrix, Techn Rept., vol. 13. Institute of Automatic Control, Nagoya Univ., Nagoya, Japan (1965)

    Google Scholar 

  40. Albert, A., Sittler, R.W.: A method for computing least squares estimators that keep up with the data. SIAM J. Control 3, 384–417 (1965)

    MathSciNet  MATH  Google Scholar 

  41. Balakrishnan, A.V.: An operator theoretic formulation of a class of control problems and a steepest descent method of solution. J. Soc. Ind. Appl. Math. Ser. A. Control 1, 109–127 (1963)

    Google Scholar 

  42. Barnett, S.: Matrices in Control Theory. Van Nostrand Reinhold, London (1971)

    MATH  Google Scholar 

  43. Beutler, F.J., Root, W.L.: The operator pseudoinverse in control and systems identification. In: Nashed, M.Z. (ed.) Generalized Inverses and Applications. Academic Press, New York (1976)

    Google Scholar 

  44. Campbell, S.L.: Optimal control of autonomous linear processes with singular matrices in the quadratic cost functional. SIAM J. Control Optim. 14(6), 1092–1106 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  45. Campbell, S.L: Optimal control of discrete linear processes with quadratic cost. Int. J. Syst. Sci. 9(8), 841–847 (1978)

    Google Scholar 

  46. Campbell, S.L.: Control problem structure and the numerical solution of linear singular systems. Math. Control Signals Syst. 1(1), 73–87 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  47. Dean, P., Porrill, J.: Pseudo-in J. Math. Anal. Appl.verse control in biological systems: a learning mechanism for fixation stability. Neural Netw. 11, 1205–1218 (1998)

    Article  Google Scholar 

  48. Kalman, R.E.: Contributions to the theory of optimal control. Bol. Soc. Mat. Mexicana 5(2), 102–119 (1960)

    MathSciNet  MATH  Google Scholar 

  49. Kalman, R.E., Ho, Y.C., Narendra, K.S.: Controllability of linear dynamical systems. Contributions to Differential Equations, vol. I, pp. 189–213. Interscience, New York (1963)

    Google Scholar 

  50. Doh-Hyun, K., Jun-Ho, O.: The Moore-Penrose inverse for the classificatory models. Control Eng. Pract. 7(3), 369–373 (1999)

    Article  Google Scholar 

  51. Liu, X., Liu, D.: Recursive computation of generalized inverses with application to optimal state estimation. Control Theory Adv. Tech. 10, 1485–1497 (1995)

    MathSciNet  Google Scholar 

  52. Lovass-Nagy, V., Powers, D.L.: Matrix generalized inverses in the handling of control problems containing input derivatives. Int. J. Syst. Sci. 6, 693–696 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  53. Minamide, N., Nakamura, K.: Minimum error control problem in banach space, Research Report of Automatic Control Lab 16. Nagoya University, Nagoya, Japan (1969)

    Google Scholar 

  54. Wahba, G., Nashed, M.Z.: The approximate solution of a class of constrained control problems. In: Proceedings of the Sixth Hawaii International Conference on Systems Sciences, Hawaii (1973)

    Google Scholar 

  55. Wang, Y.W., Wang, R.J.: Pseudoinverse and two-objective optimal control in Banach spaces. Funct. Approx. Comment. Math. 21, 149–160 (1992)

    MathSciNet  MATH  Google Scholar 

  56. Doty, K.L., Melchiorri, C., Bonivento, C.: A Theory of Generalized Inverses Applied to Robotics. Int. J. Robotics Res. 12(1), 1–19 (1993)

    Article  Google Scholar 

  57. Schwartz, E.M., Doty, K.L.: Application of the Weighted Generalized-Inverse in Control Optimization and Robotics. Florida Atlantic University, Boca Raton FL (June, Fifth Conf. on Recent Advances in Robotics (1992)

    Google Scholar 

  58. Schwartz, E.M., Doty, K.L.: The Weighted Generalized-Inverse Applied to Mechanism Controllability. University of Florida, Gainesville, FL (April, Sixth Conf. On Recent Advances in Robotics (1993)

    Google Scholar 

  59. Liu, W., Xu, Y., Yao, J., Zhao, Y., Zhao, B.Y., Liu, W.: The weighted Moore-Penrose generalized inverse and the force analysis of overconstrained parallel mechanisms, Multibody System Dynamics, 39, 363–383 (2017)

    Google Scholar 

  60. Lasky, T.A., Ravani, B.: Sensor-based path planning and motion control for a robotic system for roadway crack sealing. IEEE Trans. Control Syst. Technol. 8, 609–622 (2000)

    Article  Google Scholar 

  61. Tucker, M., Perreira, N.D.: Generalized inverses for robotics manipulators. Mech. Mach. Theory 22(6), 507–514 (1987)

    Article  Google Scholar 

  62. Lenarčić, J., Husty, M.: Latest Advances in Robot Kinematic. Springer (2012)

    Google Scholar 

  63. Angeles, J.: The application of dual algebra to kinematic analysis. In: Angeles, J., Zakhariev, E. (eds.) Computational Methods in Mechanical Systems, pp. 3–31. Springer, Heidelberg (1998)

    Google Scholar 

  64. Angeles, J.: The Dual Generalized Inverses and Their Applications in Kinematic Synthesis. In: Lenarcic, J., Husty, M. (eds.) Latest Advances in Robot Kinematics, pp. 1–10. Springer, Netherlands (2012)

    Google Scholar 

  65. Drazin, M.P.: Pseudoinverse in associative rings and semigroups. Am. Math. Monthly 65, 506–514 (1958)

    Article  MATH  Google Scholar 

  66. Hartwig, R.E.: Schur’s theorem and the Drazin inverse. Pacific J. Math. 78, 133–138 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  67. Ben-Isreal, A., Greville. T.N.E.: Generalized Inverse: Theory and Applications, 2nd edn. Springer, New York (2003)

    Google Scholar 

  68. Campbell, S.L., Meyer, C.D., Rose, N.J.: Applications of the Drazin inverse to linear systems of differential equations with singular constant coefficients. SIAM J. Appl. Math. 31, 411–425 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  69. Nashed, M.Z., Zhao, Y.: The Drazin inverse for singular evolution equations and partial differential equations. World Sci. Ser. Appl. Anal. 1, 441–456 (1992)

    MATH  Google Scholar 

  70. Simeon, B., Fuhrer, C., Rentrop, P.: The Drazin inverse in multibody system dynamics. Numer. Math. 64, 521–539 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  71. Caradus, S.R.: Generalized inverses and operator theory, Queen’s Papers in Pure and Appl. Math. 50, Queen’s University, Kingston, Ontario (1978)

    Google Scholar 

  72. King, C.F.: A note on Drazin inverses. Pacific J. Math. 70, 383–390 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  73. Lay, D.C.: Spectral properties of generalized inverses of linear operators. SIAM J. Appl. Math. 29, 103–109 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  74. Marek, I., Zitny, K.: Matrix Analysis for Applied Sciences, 2, Teubner-Texte zur Mathematik, vol. 84. Teubner, Leipzig (1986)

    MATH  Google Scholar 

  75. Drazin, M.P.: Extremal definitions of generalized inverses. Linear Algebra Appl. 165, 185–196 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  76. Heuser, H.G.: Functional Analysis. Wiley, New York (1982)

    MATH  Google Scholar 

  77. Taylor, A.E., Lay, D.C.: Introduction to Functional Analysis, 2nd edn. Wiley, New York (1980)

    MATH  Google Scholar 

  78. Hunter, J.: Generalized Inverses and their application to applied probability problems. Linear Algebra Appl. 45, 157–198 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  79. Hunter, J.: Generalized inverses of Markovian kernels in terms of properties of the Markov chain. Linear Algebra Appl. 447, 38–55 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  80. Meyer, C.D.: The role of the group generalized inverse in the theory of finite Markov chains. SIAM Rev. 17(3), 443–464 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  81. Ben-Israel, A., Charnes, A.: Generalized inverses and the Bott-Duffin network analysis. J. Math. Anal. Appl. 7, 428–435 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  82. Ben-Israel, A.: Linear equations and inequalities on finite dimensional, real or complex vector spaces: a unified theory. J. Math. Anal. Appl. 27, 367–389 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  83. Ben-Israel, A.: A note on partitioned matrices and equations. SIAM Rev. 11, 247–250 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  84. Berman, A., Plemmons, R.J.: Cones and iterative methods for best least-squares solutions of linear systems. SIAM J. Numer. Anal. 11, 145–154 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  85. Cline, R.E.: Representations for the generalized inverse of a partitioned matrix. SIAM J. Appl. Math. 12, 588–600 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  86. Anderson, W.N. Jr., Trapp, G.E.: Shorted operators II. SIAM J. Appl. Math. 28, 60–71 (1975)

    Google Scholar 

  87. Bart, H., Kaashoek, M.A., Lay, D.C.: Relative inverses of meromorphic operator functions and associated holomorphic projection functions. Math. Ann. 218(3), 199–210 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  88. Ben-Israel, A.: A note on an iterative method for generalized inversion of matrices. Math. Comput. 20, 439–440 (1966)

    Article  MATH  Google Scholar 

  89. Campbell, S.L.: The Drazin inverse of an infinite matrix. SIAM J. Appl. Math. 31, 492–503 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  90. Campbell, S.L.: Linear systems of differential equations with singular coefficients. SIAM J. Math. Anal. 8, 1057–1066 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  91. Campbell, S.L.: On the limit of a product of matrix exponentials. Linear Multilinear Algebra 6, 55–59 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  92. Campbell, S.L.: Singular perturbation of autonomous linear systems II. J. Differ. Eqn. 29, 362–373 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  93. Campbell, S.L.: Limit behavior of solutions of singular difference equations. Linear Algebra Appl. 23, 167–178 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  94. Faddeev, D.K., Faddeeva, V.N.: Computational Methods of Linear Algebra, (translated by Robert C. Williams). W.H. Freeman and Co., San Francisco (1963)

    Google Scholar 

  95. Gantmacher, F.R.: The Theory of Matrices, vol. II. Chelsea Publishing Company, New York (1960)

    MATH  Google Scholar 

  96. Cederbaum, I.: On equivalence of resistive n-port networks. IEEE Trans. Circuit Theory CT-12, 338–344 (1965)

    Google Scholar 

  97. Cederbaum, I., Lempel, A.: Parallel connection of n-port networks, IEEE Trans. Circuit Theory CT-14, 274–279 (1967)

    Google Scholar 

  98. Ben-Israel, A.: An iterative method for computing the generalized inverse of an arbitrary matrix. Math. Comput. 19, 452–455 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  99. Ben-Israel, A.: On error bounds for generalized inverses. SIAM J. Numer. Anal. 3, 585–592 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  100. Campbell, S.L.: Differentiation of the Drazin inverse. SIAM J. Appl. Math. 30, 703–707 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  101. Churchill, R.V.: Operational Mathematics. McGraw-Hill, New York (1958)

    MATH  Google Scholar 

  102. Golub, G., Kahan, W.: Calculating the singular values and pseudoinverse of a matrix. SIAM J. Numer. Anal. Series B 2, 205–224 (1965)

    MATH  Google Scholar 

  103. Golub, G.H., Pereyra, V.: The differentiation of pseudo-inverses and non-linear least squares problems whose variables separate. SIAM J. Numer. Anal. 10, 413–432 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  104. Golub, G.H., Wilkinson, J.H.: Ill conditioned eigensystems and the computation of the Jordan canonical form. SIAM Rev. 18(4), 578–619 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  105. Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solutions. Numer. Math. 14, 403–420 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  106. Greville, T.N.E.: Spectral generalized inverses of square matrices, MRC Tech. Sum. Rep. 823, Mathematics Research Center, University of Wisconsin, Madison (1967)

    Google Scholar 

  107. Kirkland, S.J., Neumann, M.: Group Inverses of M-Matrices and their Applications. CRC Press (2012)

    Google Scholar 

  108. Rao, C.R.: A note on a generalized inverse of a matrix with applications to problems in mathematical statistics, J. R. Stat. Soc. Ser. B Stat. Methodol. 24(1), 152–158 (1962)

    Google Scholar 

  109. Riaza, R.: Differential-Algebriac Systems. Analytical Aspects and Circuit Applications, World Scientifics, River Edge, NJ (2008)

    Google Scholar 

  110. Koliha, J.J.: A generalized Drazin inverse. Glasgow Math. J. 38, 367–381 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  111. Harte, R.E.: Spectral projections. Irish Math. Soc. Newslett. 11, 10–15 (1984)

    MathSciNet  MATH  Google Scholar 

  112. Harte, R.E.: Invertibility and Singularity for Bounded Linear Operators. Marcel Dekker, New York (1988)

    MATH  Google Scholar 

  113. Harte, R.E.: On quasinilpotents in rings. PanAm. Math. J. 1, 10–16 (1991)

    MathSciNet  MATH  Google Scholar 

  114. Han, J.K., Lee, H.Y., Lee, W.Y.: Invertible completions of \(2 \times 2\) upper triangular operator matrices. Proc. Am. Math. Soc. 128, 119–123 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  115. Koliha, J.J., Tran, T.D.: Semistable operators and singularly perturbed differential equations. J. Math. Anal. Appl. 231, 446–458 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  116. Koliha, J.J., Tran, T.D.: The Drazin inverse for closed linear operators. J. Oper. Theory 46(2), 323–336 (2001)

    MATH  Google Scholar 

  117. Campbell, S.L.: The Drazin inverse and systems of second order linear differential equations. Linear Multilinear Algebra 14, 195–198 (1983)

    Article  MATH  Google Scholar 

  118. Cui, X., Wei, Y., Zhang, N.: Quotient convergence and multi-splitting methods for solving singular linear equations. Calcolo 44, 21–31 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  119. Hooker, J.W., Langenhop, C.E.: On regular systems of linear differential equations with constant coefficients. Rocky Mountain J. Math. 12(4), 591–614 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  120. Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential-Algebriac Equations. SIAM, Philadelphia (1998)

    Book  MATH  Google Scholar 

  121. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, Classics in Appl. Math. 14, SIAM, Philadelphia (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Wei .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Cvetković Ilić, D.S., Wei, Y. (2017). Definitions and Motivations. In: Algebraic Properties of Generalized Inverses. Developments in Mathematics, vol 52. Springer, Singapore. https://doi.org/10.1007/978-981-10-6349-7_1

Download citation

Publish with us

Policies and ethics