Skip to main content

Introduction to Multimodality Intravascular Imaging

  • Chapter
  • First Online:
Multimodality Imaging

Abstract

Atherosclerosis is a progressive disease that is characterized by the accumulation of lipids, cholesterol, fibrous constituents, monocytes, and various other inflammatory cells in the arterial wall. Atherosclerosis is one of the major causes of morbidity and mortality in developed countries. An integrated intravascular imaging modality that can detect and characterize vulnerable plaques will provide a critically important tool for monitoring the progression of disease and evaluating the efficacy of intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abran M, Cloutier G, Cardinal MH, Chayer B, Tardif JC, Lesage F (2014) Development of a photoacoustic, ultrasound and fluorescence imaging catheter for the study of atherosclerotic plaque. IEEE Trans Biomed Circuits Syst 8(5):696–703. https://doi.org/10.1109/TBCAS.2014.2360560

    Article  PubMed  Google Scholar 

  • Abran M, Stahli BE, Merlet N, Mihalache-Avram T, Mecteau M, Rheaume E, Busseuil D, Tardif JC, Lesage F (2015) Validating a bimodal intravascular ultrasound (IVUS) and near-infrared fluorescence (NIRF) catheter for atherosclerotic plaque detection in rabbits. Biomed Opt Express 6(10):3989–3999. https://doi.org/10.1364/BOE.6.003989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bermejo J, Botas J, Garcia E, Elizaga J, Osende J, Soriano J, Abeytua M, Delcan JL (1998) Mechanisms of residual lumen stenosis after high-pressure stent implantation: a quantitative coronary angiography and intravascular ultrasound study. Circulation 98:112–118

    Article  CAS  Google Scholar 

  • Braunwald E (2006) Epilogue: what do clinicians expect from imagers? J Am Coll Cardiol 47(8 Suppl):C101–C103. https://doi.org/10.1016/j.jacc.2005.10.072. S0735-1097(06)00163-X [pii]

    Article  PubMed  Google Scholar 

  • Brecht HP, Su R, Fronheiser M, Ermilov SA, Conjusteau A, Oraevsky AA (2009) Whole-body three-dimensional optoacoustic tomography system for small animals. J Biomed Opt 14(6):064007. https://doi.org/10.1117/1.3259361

    Article  PubMed  PubMed Central  Google Scholar 

  • Brezinski ME (2006) Optical coherence tomography for identifying unstable coronary plaque. Int J Cardiol 107(2):154–165. https://doi.org/10.1016/j.ijcard.2005.07.066. S0167-5273(05)01071-5 [pii]

    Article  PubMed  Google Scholar 

  • Brezinski ME (2007) Applications of optical coherence tomography to cardiac and musculoskeletal diseases: bench to bedside? J Biomed Opt 12(5):051705. https://doi.org/10.1117/1.2795689

    Article  PubMed  Google Scholar 

  • Brezinski ME (2012) Current capabilities and challenges for optical coherence tomography as a high-impact cardiovascular imaging modality. Circulation 123(25):2913–2915. https://doi.org/10.1161/CIRCULATIONAHA.111.034272. 123/25/2913 [pii]

    Article  Google Scholar 

  • Brezinski ME, Tearney GJ, Bouma BE, Izatt JA, Hee MR, Swanson EA, Southern JF, Fujimoto JG (1996) Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology. Circulation 93(6):1206–1213

    Article  CAS  Google Scholar 

  • Campagnola PJ, Millard AC, Terasaki M, Hoppe PE, Malone CJ, Mohler WA (2002) Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. Biophys J 82(1):493–508

    Article  CAS  Google Scholar 

  • Cao Y, Hui J, Kole A, Wang P, Yu Q, Chen W, Sturek M, Cheng JX (2016) High-sensitivity intravascular photoacoustic imaging of lipid-laden plaque with a collinear catheter design. Sci Rep 6:25236. https://doi.org/10.1038/srep25236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cilingiroglu M, Oh JH, Sugunan B, Kemp NJ, Kim J, Lee S, Zaatari HN, Escobedo D, Thompson S, Milner TE, Feldman MD (2006) Detection of vulnerable plaque in a murine model of athereosclerosis with optical coherence tomography. Catheter Cardiovasc Interv 67(6):915–923

    Article  Google Scholar 

  • Fard AM, Vacas-Jacques P, Hamidi E, Wang H, Carruth RW, Gardecki JA, Tearney GJ (2013) Optical coherence tomography—near infrared spectroscopy system and catheter for intravascular imaging. Opt Express 21(25):30849–30858. https://doi.org/10.1364/Oe.21.030849

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujimoto JG (2003) Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnology 21:1361–1367

    Article  CAS  Google Scholar 

  • Fujimoto JG, Brezinski ME, Tearney GJ, Boppart SA, Bouma B, Hee MR, Southern JF, Swanson EA (1995) Optical biopsy and imaging using optical coherence tomography. Nature Med 1:970–972

    Article  CAS  Google Scholar 

  • Giovanni J, Ughi P, Wang H, Gerbaud E, Gardecki JA, Fard AM, Hamidi E, Vacas-Jacques P, Rosenberg M, Jaffer FA, Tearney GJ (2016) First-in-human dual-modality OCT and near-infrared autofluorescence imaging of coronary artery disease. JACC Cardiovasc Imaging 9(11):1304–1314

    Article  Google Scholar 

  • Gomez-Lara J, Salvatella N, Gonzalo N, Hernández-Hernández F, Fernandez-Nofrerias E, Sánchez-Recalde A, Bastante T, Marcano A, Romaguera R, Ferreiro JL, Roura G, Teruel L, Ariza-Solé A, Miranda-Guardiola F, Rodríguez García-Abad V, Gomez-Hospital JA, Alfonso F, Cequier A (2016) IVUS-guided treatment strategies for definite late and very late stent thrombosis. EuroIntervention 12(11):e1355–e1365. https://doi.org/10.4244/EIJY15M12_08

    Article  PubMed  Google Scholar 

  • Guo X, Giddens DP, Molony D, Yang C, Samady H, Zheng J, Mintz GS, Maehara A, Wang L, Pei X, Li ZY, Tang D (2018) Combining IVUS and optical coherence tomography for more accurate coronary cap thickness quantification and stress/strain calculations: a patient-specific three-dimensional fluid-structure interaction modeling approach. J Biomech Eng 140(4). https://doi.org/10.1115/1.4038263

  • Hanekamp C, Koolen J, Pijls J, Michels H, Bonnier H (1999) Comparison of quantitative coronary angiography, intravascular ultrasound, and coronary pressure measurement to assess optimum stent deployment. Circulation 99:1015–1021

    Article  CAS  Google Scholar 

  • Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA et al (1991) Optical coherence tomography. Science 254(5035):1178–1181

    Article  CAS  Google Scholar 

  • Hui J, Cao Y, Zhang Y, Kole A, Wang P, Yu G, Eakins G, Sturek M, Chen W, Cheng JX (2017) Real-time intravascular photoacoustic-ultrasound imaging of lipid-laden plaque in human coronary artery at 16 frames per second. Sci Rep 7(1):1417. https://doi.org/10.1038/s41598-017-01649-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iida O, Mano T (2019) Role of IVUS in the endovascular treatment of calcified femoropopliteal lesions. J Endovasc Ther. https://doi.org/10.1177/1526602819838991

    Article  Google Scholar 

  • Jang IK, Bouma BE, Kang DH, Park SJ, Park SW, Seung KB, Choi KB, Shishkov M, Schlendorf K, Pomerantsev E, Houser SL, Aretz HT, Tearney GJ (2002) Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol 39:604–609

    Article  Google Scholar 

  • Jang IK, Tearney GJ, MacNeill B, Takano M, Moselewski F, Ftima N, Shishkov M, Houser S, Aretz HT, Halpern EF, Bouma BE (2005) In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation 111:1551–1555

    Article  Google Scholar 

  • Jansen K, van der Steen AF, van Beusekom HM, Oosterhuis JW, van Soest G (2011) Intravascular photoacoustic imaging of human coronary atherosclerosis. Opt Lett 36(5):597–599. 210116 [pii]

    Article  Google Scholar 

  • Jansen K, Wu M, van der Steen AF, van Soest G (2014) Photoacoustic imaging of human coronary atherosclerosis in two spectral bands. Photoacoustics 2(1):12–20. https://doi.org/10.1016/j.pacs.2013.11.003

    Article  PubMed  Google Scholar 

  • Kereiakes DJ, Szyniszewski AM, Wahr D, Herrmann HC, Simon DI, Rogers C, Kramer P, Shear W, Yeung AC, Shunk KA, Chou TM, Popma J, Fitzgerald P, Carroll TE, Forer D, Adelman DC (2003) Phase I drug and light dose-escalation trial of motexafin lutetium and far red light activation (phototherapy) in subjects with coronary artery disease undergoing percutaneous coronary intervention and stent deployment: procedural and long-term results. Circulation 108(11):1310–1315. https://doi.org/10.1161/01.CIR.0000087602.91755.19. 01.CIR.0000087602.91755.19 [pii]

    Article  PubMed  Google Scholar 

  • Kolodgie FD, Burke AP, Farb A, Gold HK, Yuan J, Narula J, Finn AV, Virmani R (2001) The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes. Curr Opin Cardiol 16(5):285–292

    Article  CAS  Google Scholar 

  • Kusters DH, Tegtmeier J, Schurgers LJ, Reutelingsperger CP (2012) Molecular imaging to identify the vulnerable plaque–from basic research to clinical practice. Mol Imaging Biol 14(5):523–533. https://doi.org/10.1007/s11307-012-0586-7

    Article  PubMed  Google Scholar 

  • Landini L, Verrazzani L (1990) Spectral characterization of tissues microstructure by ultrasounds: a stochastic approach. IEEE Trans Ultrason Ferroelectr Freq Control 37(5):448–456. https://doi.org/10.1109/58.105251

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Lee MW, Cho HS, Song JW, Nam HS, Oh DJ, Park K, Oh WY, Yoo H, Kim JW (2014) Fully integrated high-speed intravascular optical coherence tomography/near-infrared fluorescence structural/molecular imaging in vivo using a clinically available near-infrared fluorescence-emitting indocyanine green to detect inflamed lipid-rich atheromata in coronary-sized vessels. Circ Cardiovasc Interv 7(4):560–569. https://doi.org/10.1161/CIRCINTERVENTIONS.114.001498

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Chen Z (2018) Multimodal intravascular photoacoustic and ultrasound imaging. Biomed Eng Lett 8(2):193–201. https://doi.org/10.1007/s13534-018-0061-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Yin J, Hu C, Zhou Q, Shung KK, Chen Z (2010) High-resolution coregistered intravascular imaging with integrated ultrasound and optical coherence tomography probe. Appl Phys Lett 97(13):133702. https://doi.org/10.1063/1.3493659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JW, Li X, Mohar D, Raney A, Jing J, Zhang J, Johnston A, Liang SS, Ma T, Shung KK, Mahon S, Brenner M, Narula J, Zhou QF, Patel PM, Chen ZP (2014) Integrated IVUS-OCT for real-time imaging of coronary atherosclerosis. JACC Cardiovasc Imaging 7(1):101–103. https://doi.org/10.1016/J.Jcmg.2013.07.012

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Ma T, Mohar D, Steward E, Yu M, Piao Z, He Y, Shung KK, Zhou Q, Patel PM, Chen Z (2015a) Ultrafast optical-ultrasonic system and miniaturized catheter for imaging and characterizing atherosclerotic plaques in vivo. Sci Rep 5:18406. https://doi.org/10.1038/srep18406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Gong X, Liu C, Lin R, Hau W, Bai X, Song L (2015b) High-speed intravascular spectroscopic photoacoustic imaging at 1000 A-lines per second with a 0.9-mm diameter catheter. J Biomed Opt 20(6):065006. https://doi.org/10.1117/1.jbo.20.6.065006

    Article  Google Scholar 

  • Li Y, Jing J, Heidari E, Zhu J, Qu Y, Chen Z (2017a) Intravascular optical coherence tomography for characterization of atherosclerosis with a 1.7 micron swept-source laser. Sci Rep 7(1):14525. https://doi.org/10.1038/s41598-017-15326-4

  • Li Y, Jing J, Qu Y, Miao Y, Zhang B, Ma T, Yu M, Zhou Q, Chen Z (2017b) Fully integrated optical coherence tomography, ultrasound, and indocyanine green-based fluorescence tri-modality system for intravascular imaging. Biomed Opt Express 8(2):1036–1044. https://doi.org/10.1364/BOE.8.001036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang S, Saidi A, Jing J, Liu G, Li J, Zhang J, Sun C, Narula J, Chen Z (2012) Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner. J Biomed Opt 17(7):070501. https://doi.org/10.1117/1.JBO.17.7.070501

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang S, Ma T, Jing J, Li X, Li J, Shung KK, Zhou Q, Zhang J, Chen Z (2014) Trimodality imaging system and intravascular endoscopic probe: combined optical coherence tomography, fluorescence imaging and ultrasound imaging. Opt Lett 39(23):6652–6655. https://doi.org/10.1364/OL.39.006652

    Article  PubMed  PubMed Central  Google Scholar 

  • Lilledahl MB, Haugen OA, Lange-Davies Cd, Svaasand LO (2007) Characterization of vulnerable plaques by multiphoton microscopy. J Biomed Opt 12(4):044005

    Article  Google Scholar 

  • Marcu L, Fang Q, Jo J, Papaioannou T, Dorafshar A, Reil T, Qiao J, Baker J, Freischlag J, Fishbein M (2005) In vivo detection of macrophages in a rabbit atherosclerotic model by time-resolved laser-induced fluorescence spectroscopy. Atherosclerosis 181(2):295–303

    Article  CAS  Google Scholar 

  • Meier B (2004) Plaque sealing by coronary angioplasty. Heart 90(12):1395–1398. https://doi.org/10.1136/hrt.2004.034983. 90/12/1395 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mintz GS, Weissman NJ (2006) Intravascular ultrasound in the drug-eluting Stent Era. J Am Coll Cardiol 48:421

    Article  Google Scholar 

  • Moreno PR, Lodder RA, Purushothaman KR, Charash WE, O’Connor WN, Muller JE (2002) Detection of lipid pool, thin fibrous cap, and inflammatory cells in human aortic atherosclerotic plaques by near-infrared spectroscopy. Circulation 105(8):923–927

    Article  Google Scholar 

  • Narula J, Dilsizian V (2008) From better understood pathogenesis to superior molecular imaging, and back. JACC Cardiovasc Imaging 1(3):406–409. https://doi.org/10.1016/j.jcmg.2008.02.002. S1936-878X(08)00028-4 [pii]

    Article  PubMed  Google Scholar 

  • Narula J, Strauss HW (2005) Imaging of unstable atherosclerotic lesions. Eur J Nucl Med Mol Imaging 32(1):1–5. https://doi.org/10.1007/s00259-004-1580-3

    Article  PubMed  Google Scholar 

  • Narula J, Strauss WH (2007) The popcorn plaques. Nat Med 13:532–534

    Article  CAS  Google Scholar 

  • Negi SI, Didier R, Ota H, Magalhaes MA, Popma CJ, Kollmer MR, Spad MA, Torguson R, Suddath W, Satler LF, Pichard A, Waksman R (2015) Role of near-infrared spectroscopy in intravascular coronary imaging. Cardiovasc Revasc Med 16(5):299–305. https://doi.org/10.1016/j.carrev.2015.06.001

    Article  PubMed  Google Scholar 

  • Nissen SE, Yock P (2001) Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation 103:604–616

    Article  CAS  Google Scholar 

  • Oberhoff M, Karsch KR (2003) Who wants his plaque sealed? Eur Heart J 24(6):494–495. S0195668X02008187 [pii]

    Article  Google Scholar 

  • Piao Z, Ma T, Li J, Wiedmann MT, Huang S, Yu M, Kirk Shung K, Zhou Q, Kim CS, Chen Z (2015) High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 m. Appl Phys Lett 107(8):083701. https://doi.org/10.1063/1.4929584

    Article  Google Scholar 

  • Potkin BN, Bartorelli AL, Gessert JM, Neville RF, Almagor Y, Roberts WC, Leon MB (1990) Coronary artery imaging with intravascular high-frequency ultrasound. Circulation 81(5):1575–1585

    Article  CAS  Google Scholar 

  • Puri R, Worthley MI, Nicholls SJ (2011) Intravascular imaging of vulnerable coronary plaque: current and future concepts. Nat Rev Cardiol 8(3):131–139. https://doi.org/10.1038/nrcardio.2010.210. nrcardio.2010.210 [pii]

    Article  PubMed  Google Scholar 

  • Qu Y, Ma T, He Y, Yu M, Zhu J, Miao Y, Dai C, Patel P, Shung KK, Zhou Q, Chen Z (2017) Miniature probe for mapping mechanical properties of vascular lesions using acoustic radiation force optical coherence elastography. Sci Rep 7(1):4731. https://doi.org/10.1038/s41598-017-05077-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raffel OC, Merchant FM, Tearney GJ, Chia S, Gauthier DD, Pomerantsev E, Mizuno K, Bouma BE, Jang IK (2008) In vivo association between positive coronary artery remodelling and coronary plaque characteristics assessed by intravascular optical coherence tomography. Eur Heart J 29(14):1721–1728. https://doi.org/10.1093/eurheartj/ehn286. ehn286 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  • Roleder T, Kovacic JC, Ali Z, Sharma R, Cristea E, Moreno P, Sharma SK, Narula J, Kini AS (2014) Combined NIRS and IVUS imaging detects vulnerable plaque using a single catheter system: a head-to-head comparison with OCT. Eurointervention 10(3):303–311. https://doi.org/10.4244/Eijv10i3a53

    Article  PubMed  Google Scholar 

  • Sawada T, Shite J, Garcia-Garcia HM, Shinke T, Watanabe S, Otake H, Matsumoto D, Tanino Y, Ogasawara D, Kawamori H, Kato H, Miyoshi N, Yokoyama M, Serruys PW, Hirata KI (2008) Feasibility of combined use of intravascular ultrasound radiofrequency data analysis and optical coherence tomography for detecting thin-cap fibroatheroma. Eur Heart J 29:1136–1146

    Article  Google Scholar 

  • Sethuraman S, Aglyamov SR, Amirian JH, Smalling RW, Emelianov SY (2007a) Intravascular photoacoustic imaging using an IVUS imaging catheter. IEEE Trans Ultrason Ferroelectr Freq Control 54(5):978–986

    Article  Google Scholar 

  • Sethuraman S, Amirian JH, Litovsky SH, Smalling RW, Emelianov SY (2007b) Ex vivo characterization of atherosclerosis using intravascular photoacoustic imaging. Opt Express 15(25):16657–16666. 148272 [pii]

    Article  CAS  Google Scholar 

  • Suri JS, Kathuria C, Molinari F (eds) (2011) Atherosclerosis disease management, 1st edn. Springer

    Google Scholar 

  • Tearney GJ, Jang IK, Bouma BE (2006) Optical coherence tomography for imaging the vulnerable plaque. J Biomed Opt 11(2):021002. https://doi.org/10.1117/1.2192697

    Article  PubMed  PubMed Central  Google Scholar 

  • Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, Wrenn SP, Narula J (2005a) Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 25(10):2054–2061. https://doi.org/10.1161/01.atv.0000178991.71605.18. 01.ATV.0000178991.71605.18 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Virmani R, Kolodgie FF, Burke AP, Finn AV, Gold HK, Tulenko TN, Wrenn SP, Narula J (2005b) Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Artheriosler Thromb Vasc Biol 25(10):2054–2061

    Article  CAS  Google Scholar 

  • Wang LV (ed) (2009) Photoacoustic imaging and spectroscopy. Taylor & Francis/CRC Press Boca Raton, Florida

    Google Scholar 

  • Wang HW, Le TT, Cheng JX (2008) Label-free imaging of arterial cells and extracellular matrix using a multimodal CARS microscope. Opt Commun 281:1813–1822

    Article  CAS  Google Scholar 

  • Wang J, Geng YJ, Guo B, Klima T, Lal BN, Willerson JT, Casscells W (2002) Near-infrared spectroscopic characterization of human advanced atherosclerotic plaques. J Am Coll Cardiol 39:1305–1313

    Article  Google Scholar 

  • Wang X, Pang Y, Ku G, Xie X, Stoica G, Wang LV (2003) Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat Biotechnol 21(7):803–806. https://doi.org/10.1038/nbt839. nbt839 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Wang HW, Langohr IM, Sturek M, Cheng JX (2009) Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimoddal nonlinear optical microscopy. Artherioscler Thromb Vasc Biol 29:1342–1348

    Article  CAS  Google Scholar 

  • Wang B, Su JL, Amirian J, Litovsky SH, Smalling R, Emelianov S (2010) Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging. Opt Express 18(5):4889–4897. 196110 [pii]

    Article  CAS  Google Scholar 

  • Wang HW, Chai N, Wang P, Hu S, Dou W, Umulis D, Wang LV, Sturek M, Lucht R, Cheng JX (2011) Label-free bond-selective imaging by listening to vibrationally excited molecules. Phys Rev Lett 106(23):238106

    Article  Google Scholar 

  • Wang B, Karpiouk A, Yeager D, Amirian J, Litovsky S, Smalling R, Emelianov S (2012a) In vivo intravascular ultrasound-guided photoacoustic imaging of lipid in plaques using an animal model of atherosclerosis. Ultrasound Med Biol. https://doi.org/10.1016/j.ultrasmedbio.2012.08.006. S0301-5629(12)00470-X [pii]

    Article  Google Scholar 

  • Wang P, Wang HW, Sturek M, Cheng JX (2012b) Bond-selective imaging of deep tissue through the optical window between 1600 and 1850 nm. J Biophotonics 5(1):25–32. https://doi.org/10.1002/jbio.201100102

    Article  PubMed  Google Scholar 

  • Waxman S, Ishibashi F, Muller JE (2006) Detection and treatment of vulnerable plaques and vulnerable patients: novel approaches to prevention of coronary events. Circulation 114(22):2390–2411. https://doi.org/10.1161/circulationaha.105.540013. 114/22/2390 [pii]

    Article  PubMed  Google Scholar 

  • Weber C, Noels H (2011) Atherosclerosis: current pathogenesis and therapeutic options. Nat Med 17(11):1410–1422. https://doi.org/10.1038/nm.2538. nm.2538 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Li X, Zhou Q, Shung KK, Chen Z (2011) Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging. J Biomed Opt 16(10):106001. https://doi.org/10.1117/1.3631798

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu M, Fw van der Steen A, Regar E, van Soest G (2016) Emerging technology update intravascular photoacoustic imaging of vulnerable atherosclerotic plaque. Interv Cardiol 11(2):120–123. https://doi.org/10.15420/icr.2016:13:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Wykrzykowska JJ, Diletti R, Gutierrez-Chico JL, van Geuns RJ, van der Giessen WJ, Ramcharitar S, Duckers HE, Schultz C, de Feyter P, van der Ent M, Regar E, de Jaegere P, Garcia-Garcia HM, Pawar R, Gonzalo N, Ligthart J, de Schepper J, van den Berg N, Milewski K, Granada JF, Serruys PW (2012) Plaque sealing and passivation with a mechanical self-expanding low outward force nitinol vShield device for the treatment of IVUS and OCT-derived thin cap fibroatheromas (TCFAs) in native coronary arteries: report of the pilot study vShield evaluated at cardiac hospital in rotterdam for investigation and treatment of TCFA (SECRITT). EuroIntervention. 20101220-01 [pii]

    Google Scholar 

  • Yang JM, Maslov K, Yang HC, Zhou Q, Shung KK, Wang LV (2009) Photoacoustic endoscopy. Opt Lett 34(10):1591–1593. 179902 [pii]

    Article  Google Scholar 

  • Yang Y, Li X, Wang T, Kumavor PD, Aguirre A, Shung KK, Zhou Q, Sanders M, Brewer M, Zhu Q (2011) Integrated optical coherence tomography, ultrasound and photoacoustic imaging for ovarian tissue characterization. Biomed Opt Express 2(9):2551–2561. https://doi.org/10.1364/BOE.2.002551. 150674 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin J, Yang HC, Li X, Zhang J, Zhou Q, Hu C, Shung KK, Chen Z (2010) Integrated intravascular optical coherence tomography ultrasound imaging system. J Biomed Opt 15(1):010512. https://doi.org/10.1117/1.3308642

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin J, Li X, Jing J, Li J, Mukai D, Mahon S, Edris A, Hoang K, Shung KK, Brenner M, Narula J, Zhou Q, Chen Z (2011) Novel combined miniature optical coherence tomography ultrasound probe for in vivo intravascular imaging. J Biomed Opt 16(6):060505. https://doi.org/10.1117/1.3589097

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoo H, Kim JW, Shishkov M, Namati E, Morse T, Shubochkin R, McCarthy JR, Ntziachristos V, Bouma BE, Jaffer FA, Tearney GJ (2011) Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo. Nat Med 17(12):1680–1684. https://doi.org/10.1038/nm.2555. nm.2555 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yun SH, Tearney GJ, Vakoc BJ, Shishkov M, Oh WY, Desjardins AE, Suter MJ, Chan RC, Evans JA, Jang IK, Nishioka NS, de Boer JF, Bouma BE (2006) Comprehensive volumetric optical microscopy in vivo. Nat Med 12:1429–1433

    Article  CAS  Google Scholar 

  • Zoumi A, Lu X, Ghassan S, Tromberg BJ (2004) Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy. Biophys J 87:2778–2786

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank many of our colleagues who have contributed to the multimodality intravascular projects at the Beckman Laser Institute and the Department of Biomedical Engineering at UCI, and the Department of Biomedical Engineering at USC. We would like to acknowledge the research grants awarded from the National Institutes of Health (R01EB-10090, R01HL125084, and R01HL127271). Please address all correspondence to Dr. Z. Chen (z2chen@uci.edu), who first proposed and initiated the research project on integrated OCT/US for intravascular imaging and wrote this introduction chapter. Dr. Z. Chen has a financial interest in OCT Medical Imaging Inc., which, however, did not support this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qifa Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, Z., Zhou, Q. (2020). Introduction to Multimodality Intravascular Imaging. In: Zhou, Q., Chen, Z. (eds) Multimodality Imaging. Springer, Singapore. https://doi.org/10.1007/978-981-10-6307-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6307-7_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6306-0

  • Online ISBN: 978-981-10-6307-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics