Integral Representation and Its Applications in Earthquake Mechanics: A Review

  • Shiro HiranoEmail author
Conference paper
Part of the Mathematics for Industry book series (MFI, volume 30)


In seismology, a faulting process as a source is linked with an elastic wavefield as an observable not only via a partial differential equation (PDE) but also via an integral equation. We conduct a review of these links and focus on the latter in terms of forward/inverse analyses of kinematic/dynamic modeling, which are investigated by many seismologists. Difficulties in the analyses are also mentioned: estimation and hyper-singularity of an integration kernel, determination of the number of parameters for modeling, and assumed dynamic friction on faults.



The author is grateful to T. Yamaguchi and T. Kusakabe for helpful discussions. Comments from a reviewer contributed to improve the manuscript.


  1. 1.
    Akaike, H.: On entropy maximization principle. In: Krishnaiah, P.R. (ed.) Application of Statistics. pp. 27–41. North-Holland, Amsterdam (1977)Google Scholar
  2. 2.
    Akaike, H.: Likelihood and the Bayes procedure. In: Bernardo, J.M., DeGroot, M.H., Lindley, D.V., Smith, A.F.M. (eds.) Baysian Statistics, pp. 143–166. University Press, Valencia, Spain (1980)Google Scholar
  3. 3.
    Aki, K., Richards, P.G.: Quantitative seismology, 1st edn. Freeman (1980)Google Scholar
  4. 4.
    Aki, K., Richards, P.G.: Quantitative seismology, 2nd edn. University Science Books (2002)Google Scholar
  5. 5.
    Ampuero, J.-P., Ben-Zion, Y.: Cracks, pulses and macroscopic asymmetry of dynamic rupture on a bimaterial interface with velocity-weakening friction. Geophys. J. Int. 173, 674–692 (2008)CrossRefGoogle Scholar
  6. 6.
    Ando, R.: Fast domain partitioning method for dynamic boundary integral equations applicable to non-planar faults dipping in 3-D elastic half-space. Geophys. J. Int. 207, 833–847 (2016)CrossRefGoogle Scholar
  7. 7.
    Aochi, H., Fukuyama, E., Matsu’ura, M.: Spontaneous rupture propagation on a non-planar fault in 3-D elastic medium. Pure Appl. Geophys. 157, 2003–2027 (2000)CrossRefGoogle Scholar
  8. 8.
    Bouchon, M.: The state of stress on some faults of the San Andreas system as inferred from near-field strong motion data. J. Geophys. Res. 102(B6), 11731–11744 (1997)CrossRefGoogle Scholar
  9. 9.
    Burridge, R., Knopoff, L.: Body force equivalents for seismic dislocations. Bull. Seism. Soc. Am. 54(6), 1875–1888 (1964)Google Scholar
  10. 10.
    Dieterich, J.H.: Applications of rate- and state-dependent friction to models of fault slip and earthquake occurrence. In: Kanamori, H. (ed.) Treatise on Geophysics. Earthquake Seismology, vol. 4, pp. 107–129. Elsevier, Amsterdam (2007)Google Scholar
  11. 11.
    Haskell, N.A.: Total energy and energy spectral density of elastic wave radiation from propagating faults. Bull. Seism. Soc. Am. 54(6), 1811–1841 (1964)Google Scholar
  12. 12.
    Hatano, T.: Friction laws from dimensional-analysis point of view. Geophys. J. Int. 202, 2159–2162 (2015)CrossRefGoogle Scholar
  13. 13.
    Heaton, T.H.: Evidence for and implications of self-healing pulses of slip in earthquake rupture. Phys. Earth Planet. Int. 64, 1–20 (1990)CrossRefGoogle Scholar
  14. 14.
    Hirano, S., Yagi, Y.: Dependence of seismic and radiated energy on shorter wavelength components. Geophys. J. Int. 209(3), 1585–1592Google Scholar
  15. 15.
    Hirano, S., Yamashita, T.: Dynamic antiplane rupture propagation crossing a material interface: modelling with BIEM. Geophys. J. Int. 200(2), 1222–1235 (2015)CrossRefGoogle Scholar
  16. 16.
    Hok, S., Fukuyama, E.: A new BIEM for rupture dynamics in half-space and its application to the 2008 Iwate-Miyagi Nairiku earthquake. Geophys. J. Int. 184, 301–324 (2011)CrossRefGoogle Scholar
  17. 17.
    Ida, Y.: Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy. J. Geophys. Res. 77(20), 3796–3805 (1972)CrossRefGoogle Scholar
  18. 18.
    Ide, S., Slip inversion. In: Kanamori, H. (ed.) Treatise on Geophysics. Earthquake Seismology, vol. 4, pp. 193–224. Elsevier (2007)Google Scholar
  19. 19.
    Ide, S., Takeo, M.: Determination of constitutive relations of fault slip based on seismic wave analysis. J. Geophys. Res. B 102(12), 27379–27391 (1997)CrossRefGoogle Scholar
  20. 20.
    Irikura, K.: Prediction of strong acceleration motion using empirical Green’s function. In: Proceedings of the 7th Japan Earthquake Engineering Symposium, pp. 151–156 (1986)Google Scholar
  21. 21.
    Kame, N., Kusakabe, T.: Proposal of extended boundary integral equation method for rupture dynamics interacting with medium interfaces. J. App. Mech. 79(3), 031017 (2012)CrossRefGoogle Scholar
  22. 22.
    Kaneko, Y., Shearer, P.M.: Seismic source spectra and estimated stress drop derived from cohesive-zone models of circular subshear rupture. Geophys. J. Int. 197(2), 1002–1015 (2014)CrossRefGoogle Scholar
  23. 23.
    Kikuchi, M., Kanamori, H.: Inversion of complex body waves-III. Bull. Seism. Soc. Am. 81, 2335–2350 (1991)Google Scholar
  24. 24.
    Madariaga, R.: High-frequency radiation from crack (stress drop) models of earthquake faulting. Geophys. J. R. Astr. Soc. 51, 625–651 (1977)CrossRefzbMATHGoogle Scholar
  25. 25.
    Mai, P.M., Schorlemmer, D., Page, M., Ampuero, J-P., Asano, K., Causse, M., Custodio, S., Fan, W., Festa, G., Galis, M., Gallovic, F., Imperatori, W., Kser, M., Malytskyy, D., Okuwaki, R., Pollitz, F., Passone, L., Razafindrakoto, H., Sekiguchi, H., Song, S., Somala, S., Thingbaijam, K., Twardzik, C., van Driel, M., Vyas, J., Wang, R., Yagi, Y., Zielke, O.: The earthquake-source inversion validation (SIV) project. Seism. Res. Lett. 87(3), 690–708 (2016)Google Scholar
  26. 26.
    Maruyama, T.: On the force equivalents of dynamical elastic dislocations with reference to the earthquake mechanism. Bull. Earthq. Res. Inst. 41, 467–486 (1963)Google Scholar
  27. 27.
    Mikumo, T., Olsen, K.B., Fukuyama, E., Yagi, Y.: Stress-breakdown time and slip-weakening distance inferred from slip-velocity functions on earthquake faults. Bull. Seism. Soc. Am. 93(1), 264–282 (2003)CrossRefGoogle Scholar
  28. 28.
    Nagata, K., Nakatani, M., Yoshida, S.: A revised rate- and state-dependent friction law obtained by constraining constitutive and evolution laws separately with laboratory data. J. Geophys. Res. B 117, 02314 (2012)CrossRefGoogle Scholar
  29. 29.
    Ohnaka, M., Yamashita, T.: A cohesive zone model for dynamic shear faulting based on experimentally inferred constitutive relation and strong motion source parameters. J. Geophys. Res. B 94(4), 4089–4104 (1989)CrossRefGoogle Scholar
  30. 30.
    Palmer, A.C., Rice, J.R.: The growth of slip surfaces in the progressive failure of over-consolidated clay. Proc. R. Soc. Lond. A. 332, 527–548 (1973)CrossRefzbMATHGoogle Scholar
  31. 31.
    Sato, T., Hirasawa, T.: Body wave spectra from propagating shear cracks. J. Phys. Earth. 21, 415–431 (1973)CrossRefGoogle Scholar
  32. 32.
    Shearer, P.M.: Introduction to Seismology, 2nd edn. Cambridge university press, Cambridge (2009)CrossRefGoogle Scholar
  33. 33.
    Tada, T.: Displacement and stress Green’s functions for a constant slip-rate on a quadrantal fault. Geophys. J. Int. 162, 1007–1023 (2005)CrossRefGoogle Scholar
  34. 34.
    Tada, T.: Stress Green’s functions for a constant slip rate on a triangular fault. Geophys. J. Int. 164, 653–669 (2006)CrossRefGoogle Scholar
  35. 35.
    Tinti, E., Fukuyama, E., Piatanesi, A., Cocco, M.: A kinematic source-time function compatible with earthquake dynamics. Bull. Seism. Soc. Am. 95(4), 1211–1223 (2005)CrossRefGoogle Scholar
  36. 36.
    Yabuki, T., Matsu’ura, M.: Geodetic data inversion using a Bayesian information criterion for spatial distribution of fault slip. Geophys. J. Int. 109(2), 363–375 (1992)CrossRefGoogle Scholar
  37. 37.
    Yagi, Y., Fukahata, Y.: Introduction of uncetainty of Green’s function into waveform inversion for seismic source processes. Geophys. J. Int. 186, 711–720 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.College of Science and EngineeringRitsumeikan UniversityKusatsu-cityJapan

Personalised recommendations