Skip to main content

Simulation of Ductile Fracture in Amorphous and Polycrystalline Materials by Multiscale Cohesive Zone Model

  • Conference paper
  • First Online:
  • 573 Accesses

Part of the book series: Mathematics for Industry ((MFI,volume 30))

Abstract

A multiscale cohesive zone model (MCZM) that combines finite element method with atomistic modeling is applied to simulate fracture of amorphous materials and polycrystalline solids. In order to apply MCZM to model amorphous materials, the Cauchy–Born rule is linked with the Parrinello–Rahman MD method to associate atom configurations with material deformation by using molecular statics (MS). We found the algorithm allows us to simulate ductile fracture of amorphous materials successfully. In addition, the methodology is applied to model the amorphous grain boundaries of polycrystalline solids, and we show that it can capture ductile fracture of polycrystalline metals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dolbow, J.O.H.N., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46(1), 131–150 (1999)

    Google Scholar 

  2. Stolarska, M., Chopp, D.L., Mos, N., Belytschko, T.: Modelling crack growth by level sets in the extended finite element method. Int. J. Numer. Methods Eng. 51(8), 943–960 (2001)

    Article  MATH  Google Scholar 

  3. Xu, X.P., Needleman, A.: Numerical simulations of fast crack growth in brittle solids. J. Mech. Phys. Solids 42(9), 1397–1434 (1994)

    Article  MATH  Google Scholar 

  4. Camacho, G.T., Ortiz, M.: Computational modelling of impact damage in brittle materials. Int. J. Solids Struct. 33(20–22), 2899–2938 (1996)

    Article  MATH  Google Scholar 

  5. Shet, C., Chandra, N.: Analysis of energy balance when using cohesive zone models to simulate fracture processes. J. Eng. Mater. Technol. 124(4), 440–450 (2002)

    Article  Google Scholar 

  6. Ren, B., Li, S.: Modeling and simulation of large-scale ductile fracture in plates and shells. Int. J. Solids Struct. 49(18), 2373–2393 (2012)

    Article  Google Scholar 

  7. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Silling, S.A., Lehoucq, R.B.: Peridynamic theory of solid mechanics. Adv. Appl. Mech. 44, 73–168 (2010)

    Article  Google Scholar 

  9. Hori, M., Oguni, K., Sakaguchi, H.: Proposal of FEM implemented with particle discretization for analysis of failure phenomena. J. Mech. Phys. Solids 53(3), 681–703 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Oguni, K., Wijerathne, M.L.L., Okinaka, T., Hori, M.: Crack propagation analysis using PDS-FEM and comparison with fracture experiment. Mech. Mater. 41(11), 1242–1252 (2009)

    Article  Google Scholar 

  11. Wijerathne, M.L.L., Oguni, K., Hori, M.: Numerical analysis of growing crack problems using particle discretization scheme. Int. J. Numer. Methods Eng. 80(1), 46–73 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Francfort, G.A., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bourdin, B., Francfort, G.A., Marigo, J.J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48(4), 797–826 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bourdin, B.: Numerical implementation of the variational formulation for quasi-static brittle fracture. Interfaces Free Bound. 9(3), 411–430 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bourdin, B., Francfort, G.A., Marigo, J.J.: The variational approach to fracture. J. Elast. 91(1–3), 5–148 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Takaishi, T., Kimura, M.: Phase field model for mode III crack growth in two dimensional elasticity. Kybernetika 45(4), 605–614 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Rountree, C.L., Kalia, R.K., Lidorikis, E., Nakano, A., Van Brutzel, L., Vashishta, P.: Atomistic aspects of crack propagation in brittle materials: multimillion atom molecular dynamics simulations. Ann. Rev. Mater. Res. 32(1), 377–400 (2002)

    Article  Google Scholar 

  18. Goel, S., Faisal, N.H., Luo, X., Yan, J., Agrawal, A.: Nanoindentation of polysilicon and single crystal silicon: molecular dynamics simulation and experimental validation. J. Phys. D: Appl. Phys. 47(27), 275304 (2014)

    Article  Google Scholar 

  19. Miller, R.E., Tadmor, E.B.: A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods. Model. Simul. Mater. Sci. Eng. 17(5), 053001 (2009)

    Article  Google Scholar 

  20. Liu, X., Li, S., Sheng, N.: A cohesive finite element for quasi-continua. Comput. Mech. 42(4), 543–553 (2008)

    Article  MATH  Google Scholar 

  21. Zeng, X., Li, S.: A multiscale cohesive zone model and simulations of fractures. Comput. Methods Appl. Mech. Eng. 199(9), 547–556 (2010)

    Article  MATH  Google Scholar 

  22. Li, S., Zeng, X., Ren, B., Qian, J., Zhang, J., Jha, A.K.: An atomistic-based interphase zone model for crystalline solids. Comput. Methods Appl. Mech. Eng. 229, 87–109 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Qian, J., Li, S.: Application of multiscale cohesive zone model to simulate fracture in polycrystalline solids. J. Eng. Mater. Technol. 133(1), 011010 (2011)

    Article  Google Scholar 

  24. He, M., Li, S.: An embedded atom hyperelastic constitutive model and multiscale cohesive finite element method. Comput. Mech. 49(3), 337–355 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Urata, S., Li, S.: Higher order Cauchy–Born rule based multiscale cohesive zone model and prediction of fracture toughness of silicon thin films. Int. J. Fract. 203, 159–181 (2017)

    Article  Google Scholar 

  26. Urata, S., Li, S.: A multiscale model for amorphous materials. Comput. Mater. Sci. 135, 64–77 (2017)

    Google Scholar 

  27. Needleman, A.: A continuum model for void nucleation by inclusion debonding. J. Appl. Mech. 54(3), 525–531 (1987)

    Article  MATH  Google Scholar 

  28. Needleman, A.: An analysis of decohesion along an imperfect interface. Int. J. Fract. 42(1), 21–40 (1990)

    Article  Google Scholar 

  29. Ericksen, J.L.: On the Cauchy–Born rule. Math. Mech. Solids 13(3–4), 199–220 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fan, H., Li, S.: Multiscale cohesive zone modeling of crack propagations in polycrystalline solids. GAMM-Mitteilungen 38(2), 268–284 (2015)

    Article  MathSciNet  Google Scholar 

  31. Lyu, D., Fan, H., Li, S.: A hierarchical multiscale cohesive zone model and simulation of dynamic fracture in metals. Eng. Fract. Mech. 163, 327–347 (2016)

    Article  Google Scholar 

  32. Liu, L., Li, S.: A finite temperature multiscale interphase zone model and simulations of fracture. J. Eng. Mater. Technol. 134(3), 031014 (2012)

    Article  Google Scholar 

  33. Tersoff, J.: Empirical interatomic potential for silicon with improved elastic properties. Phys. Rev. B 38(14), 9902 (1988)

    Article  Google Scholar 

  34. Li, S., Urata, S.: An atomistic-to-continuum molecular dynamics: theory, algorithm, and applications. Comput. Methods Appl. Mech. Eng. 306, 452–478 (2016)

    Article  MathSciNet  Google Scholar 

  35. Parrinello, M., Rahman, A.: Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52(12), 7182–7190 (1981)

    Article  Google Scholar 

  36. Chen, Y., Lee, J.D.: Multiscale modeling of polycrystalline silicon. Int. J. Eng. Sci. 42(10), 987–1000 (2004)

    Article  Google Scholar 

  37. Stemmer, S., Streiffer, S.K., Browning, N.D., Basceri, C., Kingon, A.I.: Grain boundaries in barium strontium titanate thin films: structure, chemistry and influence on electronic properties. Interface Sci. 8(2–3), 209–221 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaofan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Urata, S., Li, S. (2018). Simulation of Ductile Fracture in Amorphous and Polycrystalline Materials by Multiscale Cohesive Zone Model. In: van Meurs, P., Kimura, M., Notsu, H. (eds) Mathematical Analysis of Continuum Mechanics and Industrial Applications II. CoMFoS 2016. Mathematics for Industry, vol 30. Springer, Singapore. https://doi.org/10.1007/978-981-10-6283-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6283-4_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6282-7

  • Online ISBN: 978-981-10-6283-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics