Advertisement

Energy-Stable Numerical Schemes for Multiscale Simulations of Polymer–Solvent Mixtures

  • Mária Lukáčová-Medvid’ováEmail author
  • Burkhard Dünweg
  • Paul Strasser
  • Nikita Tretyakov
Conference paper
Part of the Mathematics for Industry book series (MFI, volume 30)

Abstract

We present a new second-order energy dissipative numerical scheme to treat macroscopic equations aiming at the modeling of the dynamics of complex polymer–solvent mixtures. These partial differential equations are the Cahn-Hilliard equation for diffuse interface phase fields and the Oldroyd-B equations for the hydrodynamics of the polymeric mixture. A second-order combined finite volume/finite difference method is applied for the spatial discretization. A complementary approach to study the same physical system is realized by simulations of a microscopic model based on a hybrid Lattice Boltzmann/Molecular Dynamics scheme. These latter simulations provide initial conditions for the numerical solution of the macroscopic equations. This procedure is intended as a first step toward the development of a multiscale method that aims at combining the two models.

References

  1. 1.
    Abels, H., Depner, D., Garcke, H.: Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities. J. Math. Fluid Mech. 15(3), 453–480 (2013). https://doi.org/10.1007/s00021-012-0118-x
  2. 2.
    Barrett, J.W., Boyaval, S.: Existence and approximation of a (regularized) Oldroyd-B model. Math. Models Methods Appl. Sci. 21(09), 1783–1837 (2011). https://doi.org/10.1142/S0218202511005581
  3. 3.
    Bray, A.J.: Theory of phase-ordering kinetics. Adv. Phys. 51(2), 481–587 (2002). https://doi.org/10.1080/00018730110117433
  4. 4.
    Cheng, Y., Kurganov, A., Qu, Z., Tang, T.: Fast and stable explicit operator splitting methods for phase-field models. J. Comput. Phys. 303, 45–65 (2015). https://doi.org/10.1016/j.jcp.2015.09.005
  5. 5.
    Dünweg, B., Ladd, A.J.C.: Lattice Boltzmann simulations of Soft Matter systems. In: Holm, C., Kremer, K. (eds.) Advanced Computer Simulation Approaches for Soft Matter Sciences III. Advances in Polymer Science, no. 221, pp. 89–166. Springer, Berlin (2009)Google Scholar
  6. 6.
    Fattal, R., Kupferman, R.: Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation. J. Non-Newton. Fluid Mech. 126(1), 23–37 (2005). https://doi.org/10.1016/j.jnnfm.2004.12.003
  7. 7.
    Fernández-Cara, E., Guillén-González, F.M., Ortega, R.R.: Mathematical modeling and analysis of viscoelastic fluids of the Oldroyd kind. In: Handbook of Numerical Analysis, vol. VIII, pp. 543–660. Elsevier (2002)Google Scholar
  8. 8.
    Grest, G.S., Kremer, K.: Molecular dynamics simulation for polymers in the presence of a heat bath. Phys. Rev. A 33(5), 3628–3631 (1986). https://doi.org/10.1103/PhysRevA.33.3628
  9. 9.
    Guillén-González, F., Tierra, G.: On linear schemes for a Cahn-Hilliard diffuse interface model. J. Comput. Phys. 234, 140–171 (2013). https://doi.org/10.1016/j.jcp.2012.09.020
  10. 10.
    Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49(3), 435–479 (1977). https://doi.org/10.1103/RevModPhys.49.435
  11. 11.
    Hu, D., Lelièvre, T.: New entropy estimates for the Oldroyd-B model and related models. Commun. Math. Sci. 5(4), 909–916 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kay, D., Welford, R.: Efficient numerical solution of Cahn-Hilliard-Navier-Stokes fluids in 2d. SIAM J. Sci. Comput. 29(6), 2241–2257 (2007). https://doi.org/10.1137/050648110
  13. 13.
    Lee, D., Huh, J.Y., Jeong, D., Shin, J., Yun, A., Kim, J.: Physical, mathematical, and numerical derivations of the Cahn-Hilliard equation. Comput. Mater. Sci. 81, 216–225 (2014). https://doi.org/10.1016/j.commatsci.2013.08.027
  14. 14.
    Lukáčová-Medvid’ová, M., Notsu, H., She, B.: Energy dissipative characteristic schemes for the diffusive Oldroyd-B viscoelastic fluid. Int. J. Numer. Methods Fluids 81(9), 523–557 (2016). https://doi.org/10.1002/fld.4195
  15. 15.
    Onuki, A.: Phase Transition Dynamics. Cambridge University Press, Cambridge (2002)Google Scholar
  16. 16.
    Rubinstein, M., Colby, R.H.: Polymer Physics. Oxford University Press, Oxford (2003)Google Scholar
  17. 17.
    Soddemann, T., Dünweg, B., Kremer, K.: A generic computer model for amphiphilic systems. Eur. Phys. J. E 6(1), 409–419 (2001). https://doi.org/10.1007/s10189-001-8054-4
  18. 18.
    Tanaka, H.: Viscoelastic phase separation. J. Phys. Condens. Matter 12(15), R207 (2000). https://doi.org/10.1088/0953-8984/12/15/201
  19. 19.
    Tierra, G., Guillén-González, F.: Numerical methods for solving the Cahn-Hilliard equation and its applicability to related energy-based models. Arch. Comput. Methods Eng. 22(2), 269–289 (2015). https://doi.org/10.1007/s11831-014-9112-1
  20. 20.
    Turek, S., Ouazzi, A., Hron, J.: On pressure separation algorithms (PSepA) for improving the accuracy of incompressible flow simulations. Int. J. Numer. Methods Fluids 59(4), 387–403 (2009). https://doi.org/10.1002/fld.1820
  21. 21.
    Zhou, D., Zhang, P., Weinan, E.: Modified models of polymer phase separation. Phys. Rev. E 73(6), 061801 (2006). https://doi.org/10.1103/PhysRevE.73.061801

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Mária Lukáčová-Medvid’ová
    • 1
    Email author
  • Burkhard Dünweg
    • 2
  • Paul Strasser
    • 1
  • Nikita Tretyakov
    • 2
  1. 1.Institute of MathematicsUniversity of MainzMainzGermany
  2. 2.Max Planck Institute for Polymer ResearchMainzGermany

Personalised recommendations