Advertisement

Rhizosphere Microorganisms: Application of Plant Beneficial Microbes in Biological Control of Weeds

  • Satyavir S. SindhuEmail author
  • Anju Sehrawat
Chapter
Part of the Microorganisms for Sustainability book series (MICRO, volume 6)

Abstract

Weeds usually result in average ~ 20–37% losses of the world’s agricultural output, and therefore, weed control is indispensable in every crop production system. For weed management, usually chemical herbicides are applied, but their indiscriminate use causes environmental problems and human health hazards. Moreover, continuous use of herbicides may lead to evolution of resistant weed biotypes and shift in the weed flora. Thus, biological control of weeds is an alternate eco-friendly method of weed management, in which microorganisms or their products are used to suppress the growth of weed species. Many rhizosphere microorganisms including Pseudomonas aeruginosa, P. fluorescens, Erwinia herbicola, Alcaligenes sp., strains of Xanthomonas campestris pv. poannua, Pseudomonas syringae pv. tagetis, Serratia plymuthica, and S. marcescens as well as the fungi including Colletotrichum gloeosporioides, Aeschynomene virginica, Phoma chenopodicola, and Exserohilum monoceras have been characterized as bioherbicides. These rhizosphere microorganisms have been found to suppress the growth of weeds by reducing weed density, biomass, and its seed production. Various metabolites produced by microorganisms such as cyanide, organic acids, secondary metabolites (antibiotic 2, 4-diacetylphloroglucinol), and plant growth regulators, including auxins (indole acetic acid and δ-aminolevulinic acid), have been found to inhibit seed germination, seedling growth, and suppression of weed plant growth. Bacterial and fungal microbes also produce a wide array of phytotoxins that may cause mortality of weed plants. Many of the microorganisms have been released as commercial bioherbicides for different crops. Thus, there are immense possibilities for characterizing and developing novel microbial bioherbicides that could reduce the application of chemical herbicides for weed control in sustainable agriculture.

Keywords

Bioherbicide Weeds Rhizosphere microorganisms Antibiotics Auxins Biological control 

References

  1. Abbas HK, Tanaka T, Duke SO, Boyette CD (1995) Susceptibility of various crop and weed species to AAL-toxin, a natural herbicide. Weed Technol 9:125–130Google Scholar
  2. Abbas H, Johnson B, Pantone D, Hines R (2004) Biological control and use of adjuvants against multiple seeded cocklebur (Xanthium strumarium) in comparison with several other cocklebur types. Biocontrol Sci Tech 14:855–860CrossRefGoogle Scholar
  3. Abu-Dieyeh M, Watson A (2007) Efficacy of Sclerotinia minor for dandelion control: effect of dandelion accession, age and grass competition. Weed Res 47:63–72CrossRefGoogle Scholar
  4. Adetunji C, Oloke J (2013) Efficacy of freshly prepared pesta granular formulations from the multicombination of wild and mutant strain of Lasiodiplodia pseudotheobromae and Pseudomonas aeruginosa. Agric Univ Tirana 12:555–563Google Scholar
  5. Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, Kemen EM (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol 4(1):e1002352CrossRefGoogle Scholar
  6. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20CrossRefGoogle Scholar
  7. Ahonsi MO, Berner DK, Emechebe AM, Lagoke ST (2002) Selection of rhizobacterial strains for suppression of germination of Striga hermonthica (Del.) Benth. Seeds. Biol Control 24:143–152CrossRefGoogle Scholar
  8. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827CrossRefPubMedGoogle Scholar
  9. Amagasa T, Paul RN, Heitholt JJ, Duke SO (1994) Physiological effects of cornexistin on Lemna paucicostata. Pesticide. Biochem Physiol 49:37–52Google Scholar
  10. Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62(11):4081–4085PubMedCentralPubMedGoogle Scholar
  11. Auld BA, McRae CF, Say MM (1988) Possible control of Xanthium spinosum by a fungus. Agric Ecosyst Environ 21:219–223CrossRefGoogle Scholar
  12. Auld BA, Say MM, Ridings HI, Andrews J (1990) Field applications of Colletotrichum orbiculare to control Xanthium spinosum. Agric Ecosyst Environ 32:315–323CrossRefGoogle Scholar
  13. Bailey KL (2014) The bioherbicide approach to weed control using plant pathogens. In: Abrol DP (ed) Integrated pest management: current concepts and ecological perspective. Elsevier, San Diego, pp 245–266CrossRefGoogle Scholar
  14. Bailey KL, Boyetchko SM, Langle T (2010) Social and economic drivers shaping the future of biological control: a Canadian perspective on the factors affecting the development and use of microbial biopesticides. Biol Control 52:221–229CrossRefGoogle Scholar
  15. Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319PubMedCentralCrossRefPubMedGoogle Scholar
  16. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266.  https://doi.org/10.1146/annurev.arplant.57.032905.105159 CrossRefPubMedGoogle Scholar
  17. Bakker M, Manter D, Sheflin A, Weir TL, Vivanco JM (2012) Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil 360:1–13CrossRefGoogle Scholar
  18. Baldani VD, Baldani JI, Dobereiner J (2000) Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biol Fertil Soils 30:485–491CrossRefGoogle Scholar
  19. Banowetz GM, Azevedo MD, Armstrong DJ, Halgren AB, Mills DI (2008) Germination-Arrest Factor (GAF): biological properties of a novel, naturally-occurring herbicide produced by selected isolates of rhizosphere bacteria. Biol Control 46:380–390CrossRefGoogle Scholar
  20. Barazani O, Friedman J (2001) Allelopathic bacteria and their impact on higher plants. Crit Rev Microbiol 27:41–55CrossRefPubMedGoogle Scholar
  21. Barbosa AM, Souza CGM, Dekker RFH, Fonseca RC, Ferreira DT (2002) Phytotoxin produced by Bipolaris euphorbiae in-vitro is effective against the weed Euphorbia heterophylla. Braz Arch Biol Technol 45:233–240CrossRefGoogle Scholar
  22. Barreto RW, Evans HC (1998) Fungal pathogens of Euphorbia heterophylla and E. hirta in Brazil and their potential as weed biocontrol agents. Mycopathologia 141:21–36CrossRefPubMedGoogle Scholar
  23. Barton J (2005) Bioherbicides: all in a day’s work… for a superhero. Manaaki Whenua, Landcare Research Ltd., Lincoln, pp 4–6Google Scholar
  24. Beckie HJ, Lozinski C, Shirriff S, Brenzil CA (2013) Herbicide-resistant weeds in the Canadian prairies: 2007 to 2011. Weed Technol 27:171–183CrossRefGoogle Scholar
  25. Berg G, Grube M, Schloter M, Smalla K (2014) Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 5:148PubMedCentralPubMedGoogle Scholar
  26. Berkowitz DB, Charette BD, Karukurichi KR, McFadden JM (2006) α-Vinylic amino acids: occurrence, asymmetric synthesis, and biochemical mechanisms. Tetrahedron Asymmetry 17:869–882CrossRefGoogle Scholar
  27. Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83.  https://doi.org/10.1023/A:1026290508166 CrossRefGoogle Scholar
  28. Bhowmick R, Girotti AW (2010) Cytoprotective induction of nitric oxide synthase in a cellular model of 5-aminolevulinic acid-based photodynamic therapy. Free Radic Biol Med 48:1296–1301PubMedCentralCrossRefPubMedGoogle Scholar
  29. Blackshaw RE, Brandt RN, Janzen HH, Entz T (2004) Weed species response to phosphorus fertilization. Weed Sci 52:406–412CrossRefGoogle Scholar
  30. Block A, Schmelz E, Jones JB, Klee HJ (2005) Coronatine and salicylic acid: the battle between Arabidopsis and Pseudomonas for phytohormone control. Mol Plant Pathol 6:79–83CrossRefPubMedGoogle Scholar
  31. Blumer C, Haas D (2000) Mechanism, regulation and ecological role of bacterial cyanide biosynthesis. Arch Microbiol 173:170–177CrossRefPubMedGoogle Scholar
  32. Bouizgarne B, El-Maarouf-Bouteau H, Madiona K, Biligui B, Monestiez M, Pennarun A, Amiar Z, Rona J, Ouhdouch Y, El Hadrami I, Bouteau F (2006) A putative role for fusaric acid in biocontrol of the parasitic angiosperm Orobanche ramosa. Mol Plant-Microbe Inter 19:550–556CrossRefGoogle Scholar
  33. Boyette CD (1991) Host range and virulence of Colletotrichum truncatum, a potential mycoherbicide for hemp sesbania (Sesbania exaltata). Plant Dis 75:62–64CrossRefGoogle Scholar
  34. Boyette CD, Hoagland RE (2013a) Bioherbicidal potential of a strain of Xanthomonas spp. for control of common cocklebur (Xanthium strumarium). Biocontrol Sci Tech 23:183–196CrossRefGoogle Scholar
  35. Boyette CD, Hoagland RE (2015) Bioherbicidal potential of Xanthomonas campestris for controlling Conyza canadensis. Biocontrol Sci Tech 25:229–237CrossRefGoogle Scholar
  36. Boyette CD, Reddy KN, Hoagland RE (2006) Glyphosate and bioherbicide interaction for controlling kudzu (Pueraria lobata), redvine (Brunnichia ovata) and trumpet creeper (Campsis radicans). Biocontrol Sci Tech 16:1067–1077CrossRefGoogle Scholar
  37. Boyette CD, Hoagland RE, Weaver MA (2007) Biocontrol efficacy of Colletotrichum truncatum for hemp sesbania (Sesbania exaltata) is enhanced with unrefined corn oil and surfactant. Weed Biol Manag 7:70–76CrossRefGoogle Scholar
  38. Boyette CD, Gealy D, Hoagland RE, Vaughn KC, Bowling AJ (2011) Hemp sesbania (Sesbania exaltata) control in rice (Oryza sativa) with the bioherbicidal fungus Colletotrichum gloeosporioides f.sp. aeschynomene formulated in an invert emulsion. Biocontrol Sci Tech 21:1399–1407CrossRefGoogle Scholar
  39. Brar LS, Walia US (1993) Bioefficacy of sulphonylureas against Phalaris minor Retz. in wheat. Indian. J. Weed Sci 25: 1–5.Google Scholar
  40. Broennimann O, Treier UA, Muller-Scharer H, Thuiller W, Peterson AT, Guisan A (2007) Evidence of climatic niche shift during biological invasion. Ecol Lett 10:701–709CrossRefPubMedGoogle Scholar
  41. Bulgarelli D, Schlaeppi Spaepen S, Ver L, van Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838.  https://doi.org/10.1146/annurev-arplant-050312-120106 CrossRefPubMedGoogle Scholar
  42. Busby RR, Rodriguez G, Gebhart DL, Yannarell AC (2016) Native Lespedeza species harbor greater non-rhizobial bacterial diversity in root nodules compared to the coexisting invader, L. cuneata. Plant Soil 401:427–436CrossRefGoogle Scholar
  43. Caldwell CJ, Hynes RK, Boyetchko SM, Korber DR (2011) Colonization and bioherbicidal activity on green foxtail by Pseudomonas fluorescens BRG100 in a pesta formulation. Can J Microbiol 58:1–9CrossRefPubMedGoogle Scholar
  44. Callaway RM, Thelen GC, Rodriguez A, Holben WE (2004) Soil biota and exotic plant invasion. Nature 427:731–733CrossRefPubMedGoogle Scholar
  45. Carbonetto B, Rascovan N, Álvarez R, Mentaberry A, Vázquez MP (2014) Structure, composition and metagenomic profile of soil microbiomes associated to agricultural land use and tillage systems in Argentine Pampas. PLoS One 9(6):e99949PubMedCentralCrossRefPubMedGoogle Scholar
  46. Charudattan R (2001) Biological control of weeds by means of plant pathogens: significance for integrated weed management in modern agro-ecology. BioControl 46:229–260CrossRefGoogle Scholar
  47. Charudattan R (2005) Ecological, practical and political inputs into selection of weed targets: what makes a good biological control target? Biol Control 35:183–196CrossRefGoogle Scholar
  48. Chaudhary H, Peng G, Hu M, He Y, Yang L, Luo Y, Tan Z (2012) Genetic diversity of endophytic diazotrophs of the wild rice, Oryza alta and identification of the new diazotroph, Acinetobacter oryzae sp. nov. Microb Ecol 63:813–821CrossRefPubMedGoogle Scholar
  49. Chhokar RS, Sharma RK, Jat GR, Pundir AK, Gathala MK (2007) Effect of tillage and herbicides on weeds and productivity of wheat under rice-wheat growing system. Crop Prot 26:1689–1696CrossRefGoogle Scholar
  50. Chhokar RS, Sharma RK, Gill SC (2013) Compatibility of herbicides against grassy weeds in wheat. Indian J Weed Sci 45:239–242Google Scholar
  51. Chutia M, Mahanta JJ, Saikia R, Boruah AKS, Sarma TC (2006) Effect of leaf blight disease on yield of oil and its constituents of Java citronella and in vitro control of the pathogen using essential oils. World J Agri Sci 2:319–321Google Scholar
  52. Cimmino A, Andolfi A, Zonno MC, Avolio F, Santini A, Tuzi A (2013) Chenopodolin: a phytotoxic unrearranged entpimaradiene diterpene produced by Phoma chenopodicola, a fungal pathogen for Chenopodium album biocontrol. J Nat Prod 76:1291–1297CrossRefPubMedGoogle Scholar
  53. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonisation, mechanisms involved and prospects for utilisation. Soil Biol Biochem 42:669–678.  https://doi.org/10.1016/j.soilbio.2009.11.024 CrossRefGoogle Scholar
  54. Cummins I, Cole DJ, Edwards R (1999) A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass. Plant J 18:285–292CrossRefPubMedGoogle Scholar
  55. Daigle DJ, Connick JWJ, Boyetchko SM (2002) Formulating a weed suppressive bacterium in ‘pesta’. Weed Technol 16:407–413CrossRefGoogle Scholar
  56. Dane F, Shaw JJ (1996) Survival and persistence of bioluminescent Xanthomonas campestris pv. campestris on host and non-host plants in the field environment. J Appl Bacteriol 80:73–80CrossRefGoogle Scholar
  57. Daniel JT, Templeton GE, Smith RJ, Fox WT (1973) Biological control of northern joint vetch in rice with an endemic fungal disease. Weed Sci 21:303–307Google Scholar
  58. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173CrossRefPubMedGoogle Scholar
  59. de Luna L, Stubbs T, Kennedy A, Kremer R (2005) Deleterious bacteria in the rhizosphere. In: Zobel R, Wright S (eds) Roots and soil management: interactions between roots and the soil. Monograph no. 48, Madison, pp 233–261Google Scholar
  60. de Luna L, Kennedy A, Hansen J, Paulitz T, Gallagher R, Fuerst E (2011) Mycobiota on wild oat (Avena fatua L.) seed and their caryopsis decay potential. Plant Health Prog 10:1–8Google Scholar
  61. DeCoste NJ, Gadkar VJ, Filion M (2010) Verticillium dahliae alters Pseudomonas spp. populations and HCN gene expression in the rhizosphere of strawberry. Can J Microbiol 56:906–915CrossRefPubMedGoogle Scholar
  62. Dhaliwal HS, Singh R, Brar LS (2007) Impact analysis of factors affecting Phalaris minor infestation in wheat in Punjab. Indian J Weed Sci 39:66–73Google Scholar
  63. Diaz R, Manrique V, Hibbard K, Fox A, Roda A, Gandolfo D (2014) Successful biological control of tropical soda apple (Solanales: Solanaceae) in Florida: a review of key program components. Florida Entomol 97:179–190CrossRefGoogle Scholar
  64. Dubeikovsky AN, Mordukhova EA, Kochetkov VV, Polikarpova FY, Boronin AM (1993) Growth promotion of blackcurrant softwood cuttings by recombinant strain Pseudomonas fluorescens BSP53a synthesizing an increased amount of indole-3-acetic acid. Soil Biol Biochem 25:1277–1281CrossRefGoogle Scholar
  65. Duffy BK, Défago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438PubMedCentralPubMedGoogle Scholar
  66. Duke SO, Abbas HK, Boyette CD, Gohbara M (1991) Microbial compounds with the potential for herbicide use. Proceeding Brighten Crop Protection Confenence Weeds, Brighton, pp 155–164Google Scholar
  67. Duke SO, Evidente A, Fiore M, Rimando AM, Vurro M, Chistiansen N, Looser R, Grossmann K (2011) Effects of the aglycone of ascaulitoxin on amino acid metabolism in Lemna paucicostata. Pestic Biochem Physiol 100:41–50CrossRefGoogle Scholar
  68. Edwards R, Brazier-Hicks M, Dixon DP, Cummins I (2005) Chemical manipulation of antioxidant defences in plants. Adv Bot Res 42:1–32CrossRefGoogle Scholar
  69. Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, Isawa T, Mitsui H, Minamisawa K (2001) Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 67:5285–5293PubMedCentralCrossRefPubMedGoogle Scholar
  70. Elliott MS, Massey B, Cui X, Hiebert E, Charudattan R, Waipara N (2009) Supplemental host range of Araujia mosaic virus, a potential biological control agent of moth plant in New Zealand. Australas Plant Pathol 38:603–607CrossRefGoogle Scholar
  71. El-Shora HM, El-Amier YA, Awad MH (2016) Antimicrobial activity and allelopathic potential of Zygophyllum coccineum L. on Chenopodium album L. British J Appl Sci Technol 15:1–10Google Scholar
  72. Elzein A, Kroschel J, Leth V (2006) Seed treatment technology: an attractive delivery system for controlling root parasitic weed Striga with mycoherbicide. Biocontrol Sci Tech 16:3–26CrossRefGoogle Scholar
  73. EPA (2015) Biopesticides Registration Action Document: Tobacco mild green mosaic tobamo virus strain U2. PC Code: 056705. United States Environmental Protection Agency. Available at: http://www.regulations.gov/#! Document Detail; D-EPA-HQ-OPP-2013-0759-0017
  74. Evidente A, Andolfi A, Vurro M, Zonno MC, Motta A (2000) Trans-4 aminoproline, a phytotoxic metabolite with herbicidal activity produced by Ascochyta caulina. Phytochemistry 53:231–237CrossRefPubMedGoogle Scholar
  75. Evidente A, Andolfi A, Cimmino A (2011) Relationships between the stereochemistry and biological activity of fungal phytotoxins. Chirality 23:674–693CrossRefPubMedGoogle Scholar
  76. Evidente M, Cimmino A, Zonno MC, Masi M, Berestetskyi A, Santoro E, Superchi S, Vurro M, Evidente A (2015) Phytotoxins produced by Phoma chenopodiicola, a fungal pathogen of Chenopodium album. Phytochemistry 117:482–488CrossRefPubMedGoogle Scholar
  77. Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:45–51CrossRefGoogle Scholar
  78. Feigl F, Anger V (1966) Replacement of benzidine by copper ethylacetoacetate and tetra base as spot-test reagent for hydrogen cyanide and cyanogen. Analyst 91:282–284CrossRefPubMedGoogle Scholar
  79. Ferreira MI, Reinhardt CF (2016) Allelopathic weed suppression in agroecosystems: a review of theories and practices. Afr J Agric Res 11(6):450–459CrossRefGoogle Scholar
  80. Ferrell J, Charudattan R, Elliott M, Hiebert E (2008) Effects of selected herbicides on the efficacy of Tobacco mild green mosaic virus to control tropical soda apple (Solanum viarum). Weed Sci 56:128–132CrossRefGoogle Scholar
  81. Fickett ND, Boerboom CM, Stoltenberg DE (2013) Predicted corn yield loss due to weed competition prior to postemergence herbicide application on Wisconsin farms. Weed Technol 27:54–62CrossRefGoogle Scholar
  82. Fischer MS, Rodriguez RJ (2013) Fungal endophytes of invasive Phragmites australis populations vary in species composition and fungicide susceptibility. Symbiosis 61:55–62CrossRefGoogle Scholar
  83. Font MI, Cordoba-Selles MC, Cebrian MC, Herrera-Vasquez JA, Alfaro-Fernandez A, Boubaker A (2009) First report of tobacco mild green mosaic virus infecting Capsicum annuum in Tunisia. Plant Dis 93:761–761CrossRefGoogle Scholar
  84. Franke AC, Singh S, McRoberts N, Nehra AS, Godara S, Malik RK, Marshall G (2007) Phalaris minor seed bank studies: longevity, seedling emergence and seed production as affected by tillage regime. Weed Res 47:73–83CrossRefGoogle Scholar
  85. Frey SD, Lee J, Melillo JM, Six J (2013) The temperature response of soil microbial efficiency and its feedback to climate. Nat Clim Chang 3:395–398CrossRefGoogle Scholar
  86. Gasson MJ (1980) Indicator technique for antimetabolic toxin production by phytopathogenic species of Pseudomonas. Appl Environ Microbiol 39:25–29PubMedCentralPubMedGoogle Scholar
  87. Gealy DR, Gurusiddah S, Ogg AGJ, Kennedy AC (1996) Metabolites from Pseudomonas fluorescens strain D7 inhibits downy brome (Bromus tectorum) seedling growth. Weed Technol 10:282–287Google Scholar
  88. Germaine KJ, Liu X, Cabellos GG, Hogan JP, Ryan D, Dowling DN (2006) Bacterial endophyte enhanced phytoremediation of the organochlorine herbicide 2, 4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57:302–310CrossRefPubMedGoogle Scholar
  89. Gerwick BC, Fields SS, Graupner PR, Gray JA, Chapin EL, Cleveland JA, Heim DR (1997) Pyridazocidin, a new microbial phytotoxin with activity in the Mehler reaction. Weed Sci 45:654–657Google Scholar
  90. Gerwick BC, Brewster WK, Deboer GJ, Fields SC, Graupner PR, Hahn DR, Pearce CJ, Schmitzer PR, Webster JD (2013) Mevalocidin, a novel phloem mobile phytotoxin from Fusarium DA 056446 and Rosellina DA092917. J Chem Ecol 39:253–261CrossRefPubMedGoogle Scholar
  91. Giovanelli J, Owens LD, Mudd SH (1973) β-cystathionase. In vivo inactivation by rhizobitoxins and role of the enzyme in methionine biosynthesis in corn seedlings. Plant Physiol 51:492–503PubMedCentralCrossRefPubMedGoogle Scholar
  92. Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Köhl J, Marrone P, Morin L, Stewart A (2012) Have biopesticides come of age? Trends Biotechnol 30:250–258CrossRefPubMedGoogle Scholar
  93. Gnanavel I (2015) Eco-friendly weed control options for sustainable agriculture. Sci Int 3:37–47CrossRefGoogle Scholar
  94. Gond SK, Bergen MS, Torres MS, White JF Jr (2015) Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res 172:79–87CrossRefPubMedGoogle Scholar
  95. Graupner PR, Carr A, Clancy E, Gilbert J, Bailey KL, Derby JA (2003) The macrocidins: novel cyclic tetramic acids with herbicidal activity produced by Phoma macrostoma. J Nat Prod 66:1558–1561CrossRefPubMedGoogle Scholar
  96. Grossmann K (2010) Auxin herbicides: current status of mechanism and mode of action. Pest Manag Sci 66:113–120PubMedGoogle Scholar
  97. Gupta G, Panwar J, Jha PN (2013) Natural occurrence of Pseudomonas aeruginosa, a dominant cultivable diazotrophic endophytic bacterium colonizing Pennisetum glaucum (L.) R Br. Appl Soil Ecol 64:252–261CrossRefGoogle Scholar
  98. Gurusiddaiah S, Gealy D, Kennedy A, Ogg AJ (1994) Isolation and characterization of metabolites from Pseudomonas fluorescens strain D7 for control of downy brome (Bromus tectorum L.). Weed Sci 42:492–501Google Scholar
  99. Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319CrossRefPubMedGoogle Scholar
  100. Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153CrossRefPubMedGoogle Scholar
  101. Harata K, Kubo Y (2014) Ras GTPase activating protein CoIra1 is involved in infection-related morphogenesis by regulating cAMP and MAPK signaling pathways through CoRas2 in Colletotrichum orbiculare. PLoS One 9:e109045PubMedCentralCrossRefPubMedGoogle Scholar
  102. Harding DP, Riazada MN (2015) Controlling weeds with fungi, bacteria and viruses: a review. Front Plant Sci 6:659–667PubMedCentralCrossRefPubMedGoogle Scholar
  103. Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320PubMedCentralCrossRefPubMedGoogle Scholar
  104. Hassan S, Mathesius U (2011) The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. J Exp Bot 63(9):3429–3444.  https://doi.org/10.1093/jxb/err430 CrossRefGoogle Scholar
  105. Heap I (2006) International survey of herbicide resistant weeds. https://www.weedscience.org/.in.asp
  106. Hoagland R, Boyette C, Abbas H (2007) Myrothecium verrucaria isolates and formulations as bioherbicide agents for kudzu. Biocontrol Sci Tech 17:721–731CrossRefGoogle Scholar
  107. Hotta Y, Tanaka T, Takaoka H, Takeuchi Y, Konnai M (1997) New physiological effects of 5-aminolevulinic acid in plants: the increase of photosynthesis, chlorophyll content and plant growth. Biosci Biotechnol Biochem 61:2025–2028CrossRefPubMedGoogle Scholar
  108. Hwang J, Chilton WS, Benson DM (2002) Pyrrolnitrin production by Burkholderia cepacia and biocontrol of Rhizoctonia stem rot of poinsettia. Biol Control 25:56–63CrossRefGoogle Scholar
  109. Hynes RK, Boyetchko SM (2006) Research initiatives in the art and science of biopesticide formulations. Soil Biol Biochem 38:845–849CrossRefGoogle Scholar
  110. Hynes RK, Boyetchko SM (2011) Improvement to the “pesta” formulation to promote survival and dispersal of Pseudomonas fluorescens BRG100 green foxtail bioherbicide. Pest Technol 5:80–87Google Scholar
  111. Hynes RK, Chumala PB, Hupka D, Peng G (2010) A complex coacervate formulation for delivery of Colletotrichum truncatum 00-003B1. Weed Technol 24:185–192CrossRefGoogle Scholar
  112. Ibekwe AM, Kennedy AC, Stubbs TL (2010) An assessment of environmental conditions for control of downy brome by Pseudomonas fluorescens D7. Int J Environ Technol Manag 12:27–46CrossRefGoogle Scholar
  113. Ichihara A, Shiraishi K, Sato H, Sakamura S, Nishiyama K, Sakai R, Furusaki A, Matsumotu T (1977) The structure of coronatine. J Chem Soc 99:636–637CrossRefGoogle Scholar
  114. Imaizumi S, Nishino T, Miyabe K, Fujimori T, Yamada M (1997) Biological control of annual bluegrass (Poa annua L.) with a Japanese isolate of Xanthomonas campestris pv. poae (JT-P482). Biol Control 8:7–14CrossRefGoogle Scholar
  115. Imaizumi S, Honda M, Fujimori T (1999) Effect of temperature on the control of annual bluegrass (Poa annua L.) with Xanthomonas campestris pv. poae (JT-P482). Biol Control 16:13–17CrossRefGoogle Scholar
  116. Javaid A, Adrees H (2009) Parthenium management by cultural filtrates of phytopathogenic fungi. Nat Prod Res 23:1541–1551CrossRefPubMedGoogle Scholar
  117. Johnson A, Booth C (1983) Plant pathologist’s pocket book. 2nd ed., Surrey, Commonwealth Agricultural Bureaux, SloughGoogle Scholar
  118. Juan Y, Wei W, Peng Y, Bu T, Zheng Y, Li-hui Z, Jin-gao D (2015) Isolation and identification of Serratia marcescens Ha1 and herbicidal activity of Ha1 ‘pesta’ granular formulation. J Integr Agri 14:1348–1355CrossRefGoogle Scholar
  119. Kadir J, Ahmad A, Sariah M, Juraimi AS (2003) Potential of Drechslera longirostrata as bioherbicide for itch grass (Rottboellia cochinchinensis). Proceedings of the 19th Asian-Pacific Weed Science Society Conference, 17–21 Mar. 2003, Manila: Weed Science Society of the Philippines, pp 450–455Google Scholar
  120. Kang Z, Zhang J, Zhou J, Qi Q, Du G, Chen J (2012) Recent advances in microbial production of δ-aminolevulinic acid and vitamin B12. Biotechnol Adv 30:1533–1542CrossRefPubMedGoogle Scholar
  121. Kao-Kniffin J, Carver SM, DiTommaso A (2013) Advancing weed management strategies using metagenomic techniques. Weed Sci 61:171–184CrossRefGoogle Scholar
  122. Kataryan BT, Torgashova GG (1976) Spectrum of herbicidal activity of 2, 4-diacetyl phloroglucinol. Dokl Akadmy Nauk Armyan SSR 63:109–112Google Scholar
  123. Kazinczi G, Lukacs D, Takacs A, Horvath J, Gaborjanyi R, Nadasy M (2006) Biological decline of Solanum nigrum due to virus infections. J Plant Dis Protect 32:325–330Google Scholar
  124. Kennedy A (1999) Bacterial diversity in agroecosystems. Agric Ecosyst Environ 74:65–76CrossRefGoogle Scholar
  125. Kennedy A, Stubbs T (2007) Management effects on the incidence of jointed goatgrass inhibitory rhizobacteria. Biol Control Theor Applic Pest Manag 40:213–221Google Scholar
  126. Kennedy AC, Elliott LF, Young FL, Douglas CL (1991) Rhizobacteria suppressive to the weed downy brome. Am J Soil Sci Soc 55:722–727CrossRefGoogle Scholar
  127. Kennedy AC, Johnson BN, Stubbs TL (2001) Host range of a deleterious rhizobacterium for biological control of downy brome. Weed Sci 49:792–797CrossRefGoogle Scholar
  128. Khan AA, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. Res J Agric Biol Sci 1:48–58Google Scholar
  129. Khandelwal A (2016) Evaluation of herbicidal potential of rhizosphere bacteria against bathu (Chenopodium album) and piazi (Asphodelus tenuifolius) weeds. Ph.D. thesis. Chaudhary Charan Singh Haryana Agricultural University, HisarGoogle Scholar
  130. Khattak SU, Iqbal Z, Lutfullah G, Bacha N, Khan AA, Saeed M, Ali M (2014) Phytotoxic and herbicidal activities of Aspergillus and Penicillium species isolated from rhizosphere and soil. Pakistan J Weed Sci Res 20:293–303Google Scholar
  131. Kim SJ, Kremer RJ (2005) Scanning and transmission electron microscopy of root colonization of morning glory (Ipomoea spp.) seedlings by rhizobacteria. Symbiosis 39:117–124Google Scholar
  132. Kim YC, Leveau J, McSpadden Gardener BB, Pierson EA, Pierson LS 3rd, Ryu C (2011) The multifactorial basis for plant health promotion by plant-associated bacteria. Appl Environ Microbiol 77:1548–1555.  https://doi.org/10.1128/AEM.01867-10 PubMedCentralCrossRefPubMedGoogle Scholar
  133. Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomous JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58:169–188CrossRefPubMedGoogle Scholar
  134. Kloepper JW, McInroy JA, Liu K (2013) Symptoms of fern distortion syndrome resulting from inoculation with opportunistic endophytic fluorescent Pseudomonas spp. PLoS One 8, e58531PubMedCentralCrossRefPubMedGoogle Scholar
  135. Kohlschmid E, Sauerborn J, Muller-stover D (2009) Impact of Fusarium oxysporum on the holoparasitic weed Phelipanche ramosa: biocontrol efficacy under field-grown conditions. Weed Res 49:56–65CrossRefGoogle Scholar
  136. Kollmann J, Banuelos MJ, Nielsen SL (2007) Effects of virus infection on growth of the invasive alien Impatiens glandulifera. Preslia 79:33–44Google Scholar
  137. Kostov T, Pacanoski Z (2007) Weeds with major economic impact on agriculture in Republic of Macedonia. Pakistan J Weed Sci Res 13:227–239Google Scholar
  138. Kourtev PS, Ehrenfeld JG, Haggblom M (2002) Exotic plant species alter the microbial community structure and function in the soil. Ecology 83:3152–3166CrossRefGoogle Scholar
  139. Kremer RJ (2000) Growth suppression of annual weeds by deleterious rhizobacteria integrated with cover crops. In: Spencer NR (ed) Proceedings of the X international symposium on biological control of weeds. Montana State University, Bozeman, pp 931–940Google Scholar
  140. Kremer RJ, Kennedy AC (1996) Rhizobacteria as biocontrol agents of weeds. Weed Technol 10:601–609Google Scholar
  141. Kremer R, Souissi T (2001) Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Curr Microbiol 43:182–186CrossRefPubMedGoogle Scholar
  142. Kremer RJ, Begonia MFT, Stanley L, Lanham ET (1990) Characterization of rhizobacteria associated with weed seedlings. Appl Environ Microbiol 56:1649–1655PubMedCentralPubMedGoogle Scholar
  143. Kroschel J, Elzein A (2004) Bioherbicidal effect of fumonisin B1, a phytotoxic metabolite naturally produced by Fusarium nygamai, on parasitic weeds of the genus Striga. Biocontrol Sci Tech 14:117–128CrossRefGoogle Scholar
  144. Kuklinsky-Sobral J, Araujo WL, Mendes R, Pizzirani-Kleiner AA, Azevedo JL (2005) Isolation and characterization of endophytic bacteria from soybean (Glycine max) grown in soil treated with glyphosate herbicide. Plant Soil 273:91–99CrossRefGoogle Scholar
  145. Kumar V, Ladha JK (2011) Direct seeding of rice: recent developments and future research needs. Adv Agron 111:299–413Google Scholar
  146. Lakshmanan V, Kitto SL, Caplan JL, Hsueh YH, Kearns DB, Bais HP (2012) Microbe-associated molecular patterns-triggered root responses mediate beneficial rhizobacterial recruitment in Arabidopsis. Plant Physiol 160(3):1642–1661PubMedCentralCrossRefPubMedGoogle Scholar
  147. Lakshmanan V, Castaneda R, Rudrappa T, Bais HP (2013) Root transcriptome analysis of Arabidopsis thaliana exposed to beneficial Bacillus subtilis FB17 rhizobacteria revealed genes for bacterial recruitment and plant defense independent of malate efflux. Planta 238(4):657–668CrossRefPubMedGoogle Scholar
  148. Lakshmi V, Kumari S, Singh A, Prabha C (2015) Isolation and characterization of deleterious Pseudomonas aeruginosa KC1 from rhizospheric soils and its interaction with weed seedlings. J King Saud Univ Sci 27:113–119CrossRefGoogle Scholar
  149. Lareen A, Burton F, Schafer P (2016) Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90:575–587PubMedCentralCrossRefPubMedGoogle Scholar
  150. Lee HB, Kim CJ, Kim JS, Hong KS, Cho KY (2003) A bleaching herbicidal activity of methoxyhygromycin (MHM) produced by an actinomycete strain Streptomyces sp. 8E-12. Lett Appl Microbiol 36:387–391CrossRefPubMedGoogle Scholar
  151. Lehman RM, Acosta-Martinez V, Buyer JS, Cambardella CA, Collins HP, Ducey TF, Halvorson JJ, Jin VL, Johnson JM, Kremer RJ, Lundgren JG (2015) Soil biology for resilient, healthy soil. J Soil Water Conserv 70(1):12A–18ACrossRefGoogle Scholar
  152. Lemerle D, Verbeek B, Orchard B (2001) Ranking the ability of wheat varieties to compete with Lolium rigidum. Weed Res 41:197–209CrossRefGoogle Scholar
  153. Leuchtmann A (1997) Ecological diversity in Neotyphodium-infected grasses as influenced by host and fungus characteristics. In: Bacon CW, Hill NS (eds) Neotyphodium/grass interactions. Springer, Boston, pp 93–108CrossRefGoogle Scholar
  154. Li J, Kremer RJ (2006) Growth response of weed and crop seedlings to deleterious rhizobacteria. Biol Control 39:58–65CrossRefGoogle Scholar
  155. Li JW-H, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325:161–165CrossRefPubMedGoogle Scholar
  156. Li M, Jordan NR, Koide RT, Yannarell AC, Davis AS (2016) Meta-analysis of crop and weed growth responses to arbuscular mycorrhizal fungi: implications for integrated weed management. Weed Sci 64:642–652CrossRefGoogle Scholar
  157. Liebman M, Mohler CL, Staver CP (2001) Ecological management of agricultural weeds. Cambridge University Press, Cambridge, p 532CrossRefGoogle Scholar
  158. Lorck H (1948) Production of hydrocyanic acid by bacteria. Physiol Plant 1:142–146CrossRefGoogle Scholar
  159. Loretta OR, Martin M, Williams II (2006) Conidial germination and germ tube elongation of Phomopsis amaranthicola and Microsphaeropsis amaranthi on leaf surfaces of seven Amaranthus species: implications for biological control. Biol Control 38:356–362CrossRefGoogle Scholar
  160. Lydon J, Kong H, Murphy C, Zhang W (2011) The biology and biological activity of Pseudomonas syringae pv. tagetis. Pest Technol 5:48–55Google Scholar
  161. Malik DK, Sindhu SS (2011) Production of indole acetic acid by Pseudomonas sp.: effect of coinoculation with Mesorhizobium sp. Cicer on nodulation and plant growth of chickpea (Cicer arietinum). Physiol Mol Biol Plants 17:25–32PubMedCentralCrossRefPubMedGoogle Scholar
  162. Malik RK, Singh S (1995) Little seed canary grass (Phalaris minor Retz.) resistance in India. Weed Technol 9:419–425Google Scholar
  163. Marinov-Serafimoov P, Dimitrova T (2007) Dynamics and distribution of the main weeds in weed associations of some grain legume crops. Plant Sci 44:167–173Google Scholar
  164. Marinov-Serafimov P (2005) Study on the competitive relationship between soybean and black nightshade (Solanum nigrum L.) under conditions of leached black earth in northern Bulgaria. Ph. D. thesisGoogle Scholar
  165. Massenssini AM, Bonduki VH, Melo CA, Totola MR, Ferreira FA, Costa MD (2014) Soil microorganisms and their role in the interactions between weeds and crops. Planta Daninha 32(4):873–884CrossRefGoogle Scholar
  166. Mazzola M, Stahlman PW, Leach JE (1995) Application method affects the distribution and efficacy of rhizobacteria suppressive of downy brome (Bromus tectorum). Soil Biol Biochem 27:1271–1278CrossRefGoogle Scholar
  167. McPhail KL, Armstrong DJ, Azevedo MD, Banowetz GM, Mills DI (2010) 4-Formylaminooxyvinyl glycine, an herbicidal germination-arrest factor from Pseudomonas rhizosphere bacteria. J Nat Prod 73:1853–1857PubMedCentralCrossRefPubMedGoogle Scholar
  168. Mejri D, Gamalero E, Tombolini R, Musso C, Massa N, Berta G, Souissi T (2010) Biological control of great brome (Bromus diandrus) in durum wheat (Triticum durum): specificity, physiological traits and impact on plant growth and root architecture of the fluorescent pseudomonad strain X33d. BioControl 55:561–572CrossRefGoogle Scholar
  169. Menaria BL (2007) Bioherbicides: an eco-friendly approach to weed management. Curr Sci 92:10–11Google Scholar
  170. Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100.  https://doi.org/10.1126/science.1203980 CrossRefPubMedGoogle Scholar
  171. Mendoza EKM, Violante HGM, Inocencio CM, Salcedo GO, Madrigal HC, Portugal VO, Pérez MVA (2012) Effects of Bacillus subtilis extracts on weed seed germination of Sorghum halepense and Amaranthus hybridus. Afr J Microbiol Res 6:1887–1892Google Scholar
  172. Miller-Wideman M, Makkar N, Tran M, Isaac B, Biest N, Stonard R (1992) Herboxidiene, a new herbicidal substance from Streptomyces chromofuscus A7847. Taxonomy, fermentation, isolation, physio-chemical and biological properties. J Antibiot 45:914–921CrossRefPubMedGoogle Scholar
  173. Montanez A, Blanco AR, Barlocco C, Beracochea M, Sicardi M (2012) Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. Appl Soil Ecol 58:21–28CrossRefGoogle Scholar
  174. Morin L, Evans KJ, Sheppard AW (2006) Selection of pathogen agents in weed biological control: critical issues and peculiarities in relation to arthropod agents. Aust J Entomol 45:349–365CrossRefGoogle Scholar
  175. Morra MJ, Kirkegaard JA (2002) Isothiocyanate release from soil-incorporated Brassica tissues. Soil Biol Biochem 34:1683–1690CrossRefGoogle Scholar
  176. Morris PF, Bone E, Tyler BM (1998) Chemotropic and contact responses of Phytophthora sojae hyphae to soybean isoflavonoids and artificial substrates. Plant Physiol 117(4):1171–1178PubMedCentralCrossRefPubMedGoogle Scholar
  177. Mortensen K (1988) The potential of an endemic fungus, Colletotrichum gloeosporioides, for biological control of round-leaved mallow (Malva pusilla) and velvetleaf (Abutilon theophrasti). Weed Sci 36:473–478Google Scholar
  178. Neal AL, Ahmad S, Gordon-Weeks R, Ton J (2012) Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS One 7(4):e35498PubMedCentralCrossRefPubMedGoogle Scholar
  179. Neumann S, Boland GJ (1999) Influence of selected adjuvants on disease severity by Phoma herbarum on dandelion (Taraxacum officinale). Weed Technol 13:675–679Google Scholar
  180. Ngigi AN, Getenga ZM, Boga HI, Ndalut PK (2012) Biodegradation of s-triazine herbicide atrazine by Enterobacter cloacae and Burkholderia cepacia sp. from long-term treated sugarcane-cultivated soils in Kenya. J Environ Sci Health B 47:769–778CrossRefPubMedGoogle Scholar
  181. Nishino T, Murao S, Wada H (1984) Mechanism of inactivation of pyridoxal phosphate-linked aspartate transaminase by gostatin. J Biochem 95:1283–1288CrossRefPubMedGoogle Scholar
  182. Norman MA, Patten KD, Gurusiddaiah S (1994) Evaluation of a phytotoxin(s) from Pseudomonas syringae for weed control in cranberries. Hortic Sci 29:1475–1477Google Scholar
  183. Oettmeier W, Dostatni R, Majewski C, Hoefle G, Fecker T, Kunze B, Reichenbac H (1990) The aurachins, naturally occurring inhibitors of photosynthetic electron flow through photosystem II and cytochrome b6/f-complex. Z Natureforsch 45:322–328Google Scholar
  184. Ohra J, Morita K, Tsujino Y, Tazaki H, Fujimori T, Goering M, Evans S, Zorner P (1995) Production of the phytotoxic metabolite, ferricrocin, by the fungus Colletotrichum gloeosporioides. Biosci Biotechnol Biochem 59:113–114CrossRefPubMedGoogle Scholar
  185. Oldroyd GED (2013) Speak, friend, and enter: signaling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263CrossRefPubMedGoogle Scholar
  186. Olesen JE, Hansen PK, Berntsen J, Christensen S (2004) Simulation of above-ground suppression of competing species and competition tolerance in winter wheat varieties. Field Crop Res 89:263–280CrossRefGoogle Scholar
  187. Oluwaseun AC, Kola OJ, Isaac A (2016) Persistence of bioherbicidal agents formulated from the multi-combination of the wild and mutant strain of Lasiodiplodia pseudotheobromae and Pseudomonas aeruginosa. Am-Eurasian J Agric Environ Sci 16:1406–1416Google Scholar
  188. Owen A, Zdor R (2001) Effect of cyanogenic rhizobacteria on the growth of velvetleaf (Abutilon theophrasti) and corn (Zea mays) in autoclaved soil and the influence of supplemental glycine. Soil Biol Biochem 33:801–809CrossRefGoogle Scholar
  189. Park J, Radhakrishnan R, Kang S, Lee I (2015) IAA producing Enterobacter sp. I-3 as a potent bio-herbicide candidate for weed control: a special reference with lettuce growth inhibition. Indian J Microbiol 55:207–212PubMedCentralCrossRefPubMedGoogle Scholar
  190. Parker C (2009) Observations on the current status of Orobanche and Striga problems worldwide. Pest Manag Sci 65:453–459CrossRefPubMedGoogle Scholar
  191. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6(10):763–775CrossRefPubMedGoogle Scholar
  192. Patil VS (2013) Rhizospheric bacteria with the potential for biological control of Parthenium hysterophorus. J Chem Biol Phys Sci 3:2679–2686Google Scholar
  193. Patil VS (2014) Isolation, characterization and identification of rhizospheric bacteria with the potential for biological control of Sida acuta. J Environ Res Dev 8:411–417Google Scholar
  194. Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220CrossRefPubMedGoogle Scholar
  195. Pérez-Jaramillo JE, Mendes R, Raaijmakers JM (2015) Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol Biol 90:635–644.  https://doi.org/10.1007/s11103-015-0337-7 PubMedCentralCrossRefPubMedGoogle Scholar
  196. Petersen J, Belz R, Walker F, Hurle K (2001) Weed suppression by release of isothiocyanates from turnip-rape mulch. Agron J 93:37–43CrossRefGoogle Scholar
  197. Phour M (2012) Biological control of Phalaris minor in wheat (Triticum aestivum L.) using rhizosphere bacteria. M. Sc. thesis. Chaudhary Charan Singh Haryana Agricultural University, HisarGoogle Scholar
  198. Phour M (2016) Aminolevulinic acid production by rhizobacteria: its role in salt tolerance and weed control in mustard [Brassica juncea (L.)]. Ph. D. thesis. Chaudhary Charan Singh Haryana Agricultural University, HisarGoogle Scholar
  199. PMRA (2006) “Re-evaluation of Colletotrichum gloeosporioides f.sp. malvae [CGM]” REV2006–10. Health Canada, OttawaGoogle Scholar
  200. PMRA (2010) “Sclerotinia minor strain IMI344141” RD2010-08. Health Canada, OttawaGoogle Scholar
  201. Prikyrl Z, Vančura V, Wurst M (1985) Auxin formation by rhizosphere bacteria as a factor of root growth. Biol Plant 27:159–163.  https://doi.org/10.1007/BF02902155 CrossRefGoogle Scholar
  202. Quail JW, Ismail N, Pedras MSC, Boyetchko SM (2002) Pseudophomins A and B, a class of cyclic lipodepsipeptides isolated from a Pseudomonas species. Acta Crystallographica, section C: crystal structure. Communications 58:268–271Google Scholar
  203. Raaijmakers JM, Weller DM (1998) Natural plant protection by 2, 4- diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Mol Plant-Microbe Interact 11:144–152CrossRefGoogle Scholar
  204. Raaijmakers JM, Weller AM, Thomashow LS (1997) Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl Environ Microbiol 63(3):881–887PubMedCentralPubMedGoogle Scholar
  205. Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547CrossRefPubMedGoogle Scholar
  206. Ramyasmruthi S, Pallavi O, Pallavi S, Tilak K, Srividya S (2012) Chitinolytic and secondary metabolite producing Pseudomonas fluorescens isolated from Solanaceae rhizosphere effective against broad spectrum fungal phytopathogens. Asian J Plant Sci Res 2:16–24Google Scholar
  207. Rasmann S, Turlings TCJ (2016) Root signals that mediate mutualistic interactions in the rhizosphere. Curr Opin Plant Biol 32:62–68CrossRefPubMedGoogle Scholar
  208. Ray P, Vijayachandran LS (2013) Evaluation of indigenous fungal pathogens from horse purslane (Trianthema portulacastrum) for their relative virulence and host range assessments to select a potential mycoherbicidal agent. Weed Sci 61:580–585CrossRefGoogle Scholar
  209. Riddle GE, Burpee LL, Boland GJ (1991) Virulence of Sclerotinia sclerotiorum and S. minor on dandelion (Taraxacum officinale). Weed Sci 39:109–118Google Scholar
  210. Roberts KJ, Anderson RC (2001) Effect of garlic mustard [Alliaria petiolata (Beib. Cavara & Grande)] extracts on plants and arbuscular mycorrhizal (AM) fungi. Am Midl Nat 146:146–152CrossRefGoogle Scholar
  211. Rodrigues RR, Pineda RP, Barney JN, Nilsen ET, Barrett JE, Williams MA (2015) Plant invasions associated with change in root-zone microbial community structure and diversity. PLoS One 10:e0141424PubMedCentralCrossRefPubMedGoogle Scholar
  212. Rout ME, Chrzanowski TH, Westlie TK, DeLuca TH, Callaway RM, Holben WE (2013) Bacterial endophytes enhance competition by invasive plants. Am J Bot 100:1726–1737CrossRefPubMedGoogle Scholar
  213. Rubiales D, Fernández-Aparicio M (2012) Innovations in parasitic weeds management in legume crops. Agro Sustain Develop 32:433–449CrossRefGoogle Scholar
  214. Rudrappa T, Czymmek KJ, Paré PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556.  https://doi.org/10.1104/pp.108.127613 PubMedCentralCrossRefPubMedGoogle Scholar
  215. Ryall B, Mitchell H, Mossialos D, Williams HD (2009) Cyanogenesis by the entomopathogenic bacterium Pseudomonas entomophila. Lett Appl Microbiol 49:131–135CrossRefPubMedGoogle Scholar
  216. Saikkonen K, Wäli P, Helander M, Faeth SH (2004) Evolution of endophyte–plant symbioses. Trends Plant Sci 9(6):275–280CrossRefPubMedGoogle Scholar
  217. Sanchez Márquez S, Bills GF, Herrero N, Zabalgogeazcoa Í (2012) Non-systemic fungal endophytes of grasses. Fungal Ecol 5(3):289–297CrossRefGoogle Scholar
  218. Sarwar M, Kremmer RJ (1995) Enhanced suppression of plant growth through production of L-tryptophan compounds by deleterious rhizobacteria. Plant Soil 172:261–269CrossRefGoogle Scholar
  219. Sasaki K, Tanaka T, Nishio N, Nagai S (1993) Effect of culture pH on the extracellular production of 5-aminolevulinic acid by Rhodobacter sphaeroides from volatile fatty acid. Biotechnol Lett 15:859–864CrossRefGoogle Scholar
  220. Sasikala C, Ramana CV, Rao PR (1994) 5-aminolevulinic acid: a potential herbicide/insecticide from microorganisms. Biotechnol Prog 10:451–459CrossRefGoogle Scholar
  221. Sayed MHE, Aziz ZKA, Abouzaid AM (2014) Efficacy of extracellular metabolite produced by Streptomyces levis strain LX-65 as a potential herbicidal agent. J Am Sci 10:169–180Google Scholar
  222. Schisler DA, Howard KM, Bothast RJ (1991) Enhancement of disease caused by Colletotrichum truncatum in Sesbania exaltata by coinoculating with epiphytic bacteria. Biol Control 1:261–268CrossRefGoogle Scholar
  223. Schlaeppi K, Bulgarelli D (2015) The plant microbiome at work. Mol Plant-Microbe Inter 28(3):212–217CrossRefGoogle Scholar
  224. Selvakumar G, Lenin M, Thamizhiniyan P, Ravimycin T (2009) Response of biofertilizers on the growth and yield of blackgram (Vigna mungo). Recom Res Sci Technol 1:169–175Google Scholar
  225. Senthilkumar M, Anandham R, Madhaiyan M, Venkateswaran V, Sa T (2011) Endophytic bacteria: perspectives and applications in agricultural crop production. In: Bacteria in agrobiology: crop ecosystems. Springer, Berlin/Heidelberg, pp 61–96CrossRefGoogle Scholar
  226. Sessitsch A, Hardoim P, Doring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M, Hurek T (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant-Microbe Inter 25:28–36CrossRefGoogle Scholar
  227. Shaw LJ, Burns RG (2004) Enhanced mineralization of [U-14C] 2, 4-dichlorophenoxyacetic acid in soil from the rhizosphere of Trifolium pratense. Appl Environ Microbiol 70:4766–4774PubMedCentralCrossRefPubMedGoogle Scholar
  228. Shaw RH, Bryner S, Tanner R (2009) The life history and host range of the Japanese knot weed psyllid, Aphalara itadori Shinji: potentially the first classical biological weed control agent for the European Union. Biol Control 49:105–113CrossRefGoogle Scholar
  229. Singh S (2006) Herbicide resistance mechanism in Phalaris minor and its consequences on management strategies. Indian J Weed Sci 38:183–193Google Scholar
  230. Singh S (2007) Role of management practices on control of isoproturon resistant little seed canary grass (Phalaris minor) in India. Weed Technol 21:339–346CrossRefGoogle Scholar
  231. Soares WL, Porto MFS (2009) Estimating the social cost of pesticide use: an assessment from acute poisoning in Brazil. Ecol Econ 68:2721–2728CrossRefGoogle Scholar
  232. Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:a001438PubMedCentralCrossRefPubMedGoogle Scholar
  233. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448.  https://doi.org/10.1111/j.1574-6976.2007.00072.x CrossRefPubMedGoogle Scholar
  234. Stewart-Wade SM, Boland GJ (2005) Oil emulsions increase efficacy of Phoma herbarum to control dandelion but are phytotoxic. Biocontrol Sci Tech 15:671–681CrossRefGoogle Scholar
  235. Stubbs TL, Kennedy AC (2012) Microbial weed control and microbial herbicides. In: Alvarez-Fernandez R (ed.). INTECH DOI: https://doi.org/10.5772/32705
  236. Sturz A, Matheson B, Arsenault W, Kimpinski J, Christie BR (2001) Weeds as a source of plant growth promoting rhizobacteria in agricultural soils. Can J Microbiol 47:1013–1024CrossRefPubMedGoogle Scholar
  237. Suslow TV, Schroth MN (1982) Role of deleterious rhizobacteria as minor pathogens in reducing crop growth. Phytopathology 72:111–115CrossRefGoogle Scholar
  238. Suzuki S, Yuxi H, Oyaizu H, He Y (2003) Indole-3-acetic acid production in Pseudomonas fluorescens HP72 and its association with suppression of creeping bentgrass brown patch. Curr Microbiol 47:138–143CrossRefPubMedGoogle Scholar
  239. Takahashi E, Kimura T, Nakamura K, Arahira M, Iida M (1995) Phosphonothrixin, a novel herbicidal antibiotic produced by Saccharothrix sp. ST 888, I. Taxonomy, fermentation isolation and biological properties. J Antibiot 48:1124–1129CrossRefPubMedGoogle Scholar
  240. Tateno A (2000) Herbicidal composition for the control of annual bluegrass. U.S. Patent No 6162763A. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  241. TeBeest D (1982) Survival of Colletotrichum gloeosporioides f. sp. aeschynomene in rice irrigation water and soil [used as biocontrol for the weed]. Plant Dis 66:469–472CrossRefGoogle Scholar
  242. Templeton GE (1988) Biological control of weeds. Am J Altern Agri 3:69–72CrossRefGoogle Scholar
  243. Tetard-Jones C, Edwards R (2016) Potential roles for microbial endophytes in herbicide tolerance in plants. Pest Manag Sci 72:203–209CrossRefPubMedGoogle Scholar
  244. Tosiah S, Kadir J, Sariah M, Juraimi AS, Lo NP, Soetikno S (2009) Survey and evaluation of native fungal pathogens for biocontrol of barnyard grass (Echinochloa crus-galli complex). J Trop Agric Food Sci 37:119–128Google Scholar
  245. Tosiah S, Kadir J, Sariah M, Juraimi AS, Soetikno S (2011) Efficacy of Exserohilum monoceras, a potential fungi for biocontrol of Echinochloa species. J Trop Agric Food Sci 39:117–124Google Scholar
  246. van Loon LC, Bakker PAHM (2006) Root associated bacteria inducing systemic resistance. In: Gnanamanickam SS (ed) Plant associated bacteria. Springer, Dordrecht, pp 269–316CrossRefGoogle Scholar
  247. van Overbeek LS, Franke AC, Nijhuis EH, Groeneveld RM, da Rocha UN, Lotz LA (2011) Bacterial communities associated with Chenopodium album and Stellaria media seeds from arable soils. Microb Ecol 62:257–264CrossRefPubMedGoogle Scholar
  248. Vickery P, Wheeler J, Mulcahy C (1987) Factors affecting the hydrogen cyanide potential of white clover (Trifolium repens L.). Aust J Agric Res 38:1053–1059CrossRefGoogle Scholar
  249. Vyas P, Gulati A (2009) Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol 22:1–15Google Scholar
  250. Wang P, Zhang X, Kong C (2013) The response of allelopathic rice growth and microbial feedback to barnyard grass infestation in a paddy field experiment. Eur J Soil Biol 56:26–32CrossRefGoogle Scholar
  251. Wani PA, Khan MS, Zaidi A (2007) Co-inoculation of nitrogen-fixing and phosphate solubilizing bacteria to promote growth, yield and nutrient uptake in chickpea. Acta Agron Hungarica 55:315–323CrossRefGoogle Scholar
  252. Wani PA, Khan MS, Zaidi A (2008) Impact of zinc-tolerant plant growth promoting rhizobacteria on lentil grown in zinc amended soil. Agron Sustain Dev 28:449–455CrossRefGoogle Scholar
  253. Watrous J, Roach P, Alexandrov T, Heath B, Yang JY, Kersten RD, van der Voort M, Pogliano K, Gross H, Raaijmakers JM, Moore BS, Laskin J, Bandeira N, Dorrestein PC (2012) Mass spectral molecular networking of living microbial colonies. Proc Natl Acad Sci U S A 109:1743–1752.  https://doi.org/10.1073/pnas.1203689109 CrossRefGoogle Scholar
  254. Weissmann R, Uggla C, Gerhardson B (2003) Field performance of a weed-suppressing Serratia plymuthica strain applied with conventional spraying equipment. Biol Control 48:725–742Google Scholar
  255. Weller DM, Raaijmakers JM, Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348.  https://doi.org/10.1146/annurev.phyto.40.030402.110010 CrossRefPubMedGoogle Scholar
  256. Wolfe BE, Klironomos JN (2005) Breaking new ground: soil communities and exotic plant invasion. Bioscience 55:477–487CrossRefGoogle Scholar
  257. Wood AR, Morris MJ (2007) Impact of the gall-forming rust fungus Uromycladium tepperianum on the invasive tree Acacia saligna in South Africa: 15 years of monitoring. Biol Control 41:68–77CrossRefGoogle Scholar
  258. Xie H, Pasternack JJ, Glick BR (1996) Isolation and characterization of mutants of plant growth promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indole acetic acid. Curr Microbiol 32:67–71CrossRefGoogle Scholar
  259. Yandoc CB, Rosskopf EN, Pitelli A, Charudattan R (2006) Effect of selected pesticides on conidial germination and mycelia growth of Dactylaria higginsii, a potential bioherbicide for purple nutsedge (Cyperus rotundus). Weed Technol 20:255–260CrossRefGoogle Scholar
  260. Yang Z (2000) Maximum likelihood analysis of molecular adaptation in abalone sperm lysin reveals variable selective pressures among lineages and sites. Mol Biol Evol 17:1446–1455CrossRefPubMedGoogle Scholar
  261. Yang J, Cao HZ, Wang W, Zhang LH, Dong JG (2014) Isolation, identification and herbicidal activity of metabolites produced by Pseudomonas aeruginosa CB-4. J Integr Agric 13:1719–1726CrossRefGoogle Scholar
  262. Yorinori JT, Gazziero LP (1989) Control of milk weed (Euphorbia heterophylla) with Helminthosporium sp. In: Delfosse ES (ed) Proceedings 7th international symposium on biological control of weeds, 6–11 March, 1988. Istituto sperimentale per la patologia vegetale, Rome, pp 571–576Google Scholar
  263. You C, Zhou F (1989) Non-nodular endorhizospheric nitrogen fixation in wetland rice. Can J Microbiol 35:403–408CrossRefGoogle Scholar
  264. Zachow C, Jahanshah G, de Bruijn I, Song C, Ianni F, Pataj Z, Gerhardt H, Pianet I, Lämmerhofer M, Berg G, Gross H (2015) The novel lipopeptide poaeamide of the endophyte Pseudomonas poae RE 1-1-14 is involved in pathogen suppression and root colonization. Mol Plant-Microbe Interact 28(7):800–810CrossRefPubMedGoogle Scholar
  265. Zdor R, Alexander C, Kremer R (2005) Weed suppression by deleterious rhizobacteria is affected by formulation and soil properties. Commun Soil Sci Plant Anal 36:1289–1299CrossRefGoogle Scholar
  266. Zeller S, Brandl H, Schmid B (2007) Host-plant selectivity of rhizobacteria in a crop weed model system. PLoS One 2:1–7CrossRefGoogle Scholar
  267. Zeng RS (2014) Allelopathy-the solution is indirect. J Chem Ecol 40:515–516CrossRefPubMedGoogle Scholar
  268. Zermane N, Souissi T, Kroschel J, Sikora R (2007) Biocontrol of broom rape (Orobanche crenata Forsk. and Orobanche foetida Poir.) by Pseudomonas fluorescens isolate Bf7-9 from the faba bean rhizosphere. Biocontrol Sci Tech 17:487–497CrossRefGoogle Scholar
  269. Zhang ZJ, Li HZ, Zhou WJ, Takeuchi Y, Yoneyama K (2006) Effect of 5-aminolevulinic acid on development and salt tolerance of potato (Solanum tuberosum L.) microtubers in vitro. Plant Growth Regul 49:27–34Google Scholar
  270. Zhang J, Wang W, Lu X, Xu Y, Zhang X (2010) The stability and degradation of a new biological pesticide, pyoluteorin. Pest Manag Sci 66:248–252CrossRefPubMedGoogle Scholar
  271. Zhao S, Shamoun S (2005) Effects of potato dextrose broth and gelatin on germination and efficacy of Phoma exigua, a potential biocontrol agent for salal (Gaultheria shallon). Can J Plant Pathol 27:234–244CrossRefGoogle Scholar
  272. Zhou L, Bailey K, Derby J (2004) Plant colonization and environmental fate of the biocontrol fungus Phoma macrostoma. Biol Control 30:634–644CrossRefGoogle Scholar
  273. Zidack NK, Quimby PC (2002) Formulation of bacteria for biological control using the stabilize method. Biocontrol Sci Tech 12:67–74CrossRefGoogle Scholar
  274. Zonno MC, Vurro M, Luceretti S, Andolfi A, Perrone C, Evidente A (2008) Phyllostictine A, potential herbicide produced by Phyllosticta cirsii: in vitro production and toxicity. Plant Sci 175:818–828CrossRefGoogle Scholar
  275. Zuo S, Li X, Ma Y, Yang S (2014) Soil microbes are linked to the allelopathic potential of different wheat genotypes. Plant Soil 378:49–58CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of MicrobiologyCCS Haryana Agricultural UniversityHisarIndia

Personalised recommendations