Skip to main content

Fermentation: A Process for Biofertilizer Production

  • Chapter
  • First Online:
Microorganisms for Green Revolution

Part of the book series: Microorganisms for Sustainability ((volume 6))

Abstract

Biofertilizers are the product of fermentation process, constituting efficient living soil microorganisms. They improve plant growth and productivity through supply of easily utilizable nutrients. They are cost-effective and eco-friendly bioinoculants having great potential to enhance agricultural production in sustainable way. Biofertilizers are grouped into different types based on their functions such as nitrogen-fixing, phosphate-solubilizing, phosphate mobilizing, and other plant growth-promoting biofertilizers promoting plant growth by different mechanisms. Solid-state fermentation and submerged fermentation are two main types of fermentation, used for the production of biofertilizers. Each type of biofertilizer is prepared by selection of efficient microbial strain, its cultivation using specific nutrient medium, scale-up, and formulation using solid or liquid base. Knowledge about host specificity of the microbial strain and properties of soil and environmental conditions of the field are the important factors which determine the success of biofertilizer application. Recent developments in the field of microbial taxonomy, molecular biology, genetic engineering, metabolic engineering, computer science, and nanotechnology have played a significant role in the advancement of fermentation process of biofertilizer production. Hence, the production of biofertilizers having better efficiency, higher competitive ability, multiple functionality, and longer shelf life has become possible. Biofertilizers with such characteristics can be an effective substitute of chemical fertilizers. The present chapter deals with the types of biofertilizers, their applications and outcomes, types of fermentation processes used for biofertilizer production, and past and present status of fermentation technologies used for biofertilizer production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abd El-Fattah DA, Eweda WE, Zayed MS et al (2013) Effect of carrier materials, sterilization method, and storage temperature on survival and biological activities of Azotobacter chroococcum inoculants. Ann Agric Sci 58(2):111–118

    Google Scholar 

  • Abd El-Lattief EA (2016) Use of Azospirillum and Azotobacter bacteria as biofertilizers in cereal crops: a review. Int J Res Eng Appl Sci 6(7):36–44

    Google Scholar 

  • Abdel Ghany TM, Alawlaqi MM, Al Abboud MA (2013) Role of biofertilizers in agriculture: a brief review. Mycopathologia 11(2):95–101

    Google Scholar 

  • Abi-Ghanem R, Carpenter-Boggs L, Smith JL et al (2012) Nitrogen fixation by US and middle eastern chickpeas with commercial and wild middle eastern inocula. ISRN Soil Sci 2012:1. https://doi.org/10.5402/2012/981842

    Article  CAS  Google Scholar 

  • Adholeya A, Das M (2012) Biofertilizers: potential for crop improvement under stressed conditions. In: Tuteja N, Gill SS, Tuteja R (eds) Improving crop productivity in sustainable agriculture. Wiley-VCH, Weinheim, pp 183–200

    Chapter  Google Scholar 

  • Agarwal S, Ahmad Z (2010) Contribution of the Rhizobium inoculation on plant growth and productivity of two cultivars of Berseem (Trifolium alexandrinum L.) in saline soil. Asian J Plant Sci 9:344–350

    Article  Google Scholar 

  • Akhtar M, Siddiqui Z (2009) Effects of phosphate solubilizing microorganisms and Rhizobium sp. on the growth, nodulation, yield and root-rot disease complex of chickpea under field condition. Afr J Biotechnol 8(15):3489–3496

    Google Scholar 

  • Alam S, Seth RK (2014) Comparative study on effect of chemical and biofertilizer on growth, development and yield production of paddy crop (Oryza sativa). Int J Sci Res 3(9):411–414

    Google Scholar 

  • Alam S, Khalil S, Ayub N et al (2002) In vitro solubilization of inorganic phosphate by phosphate solubilizing microorganism (PSM) from maize rhizosphere. Int J Agric Biol 4:454–458

    CAS  Google Scholar 

  • Albareda M, Rodríguez-Navarro DN, Camacho M et al (2008) Alternatives to peat as a carrier for rhizobia inoculants: solid and liquid formulations. Soil Biol Biochem 40:2771–2779

    Article  CAS  Google Scholar 

  • Allen EK, Allen ON (1950) The anatomy of nodular growths on roots of Tribulus cistoides L. Proc Soil Soc Am 14:179–183

    Article  Google Scholar 

  • Armada E, Portela G, Roldan A et al (2014) Combined use of beneficial soil microorganism and agro waste residue to cope with plant water limitation under semiarid conditions. Geoderma 232:640–648

    Article  CAS  Google Scholar 

  • Atieno M, Herrmann L, Okalebo R et al (2012) Efficiency of different formulations of Bradyrhizobium japonicum and effect of co-inoculation of Bacillus subtilis with two different strains of Bradyrhizobium japonicum. World J Microbiol Biotechnol 28:2541–2550

    Article  CAS  PubMed  Google Scholar 

  • Auge RM, Toler HD, Saxton AM (2015) Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25:13–24

    Article  PubMed  Google Scholar 

  • Baby UI (2002) Biofertilizers in tea planters. Chronicle 98:395–396

    Google Scholar 

  • Bakri Y, Akeed Y, Thonart P (2012) Comparison between continuous and batch processing to produce xylanase by Penicillium canescens 10-10c. Braz J Chem Eng 29(3):441–448

    Article  CAS  Google Scholar 

  • Baral RB, Adhikari P (2013) Effect of Azotobacter on growth and yield of maize. SAARC J Agri 11(2):141–147

    Google Scholar 

  • Bashan Y, Holguin G, Lifshitz R (1993) Isolation and characterization of plant growth-promoting rhizobacteria. In: Glick BR, Thompson JE (eds) Methods in plant molecular biology and biotechnology. CRC Press, Boca Raton, pp 331–345

    Google Scholar 

  • Bassey EE (2013) Trends in fermentation process, purification and recovering of biomolecules. Inter J Agri Biosci 2(6):340–343

    Google Scholar 

  • Beijerinck MW (1888) Culture des Bacillus radicola aus den. Knöllchen. Bot Ztg 46:740–750

    Google Scholar 

  • Beijerinck MW (1922) Azotobacter chroococcum als indikator van de vruchtbarrheid van den grond. K Ned Akad Wet Versl GewoneVergad Afd Natuurkd 30:431–438

    Google Scholar 

  • Ben Rebah F, Tyagi RD, Prevost D (2002) Wastewater sludge as a substrate for growth and carrier for rhizobia: the effect of storage conditions on survival of Sinorhizobium meliloti. Bioresour Technol 83:145–151

    Article  CAS  PubMed  Google Scholar 

  • Ben Rebah F, Prevost D, Yezza A et al (2007) Agro-industrial waste materials and wastewater sludge for rhizobial inoculant production: a review. Bioresour Technol 98:3535–3546

    Article  CAS  PubMed  Google Scholar 

  • Berruti A, Lumini E, Balestrini R et al (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6:1559. https://doi.org/10.3389/fmicb.2015.01559

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK et al (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Factories 13(1):1–9

    Article  Google Scholar 

  • Biederbeck VO, Geissler HJ (1993) Effect of storage temperatures on rhizobium meliloti survival in peat- and clay-based inoculants. Can J Plant Sci 73:101–110

    Article  Google Scholar 

  • Bissonnette N, Lalande R, Bordeleau LM (1986) Large-scale production of Rhizobium meliloti on Whey. Appl Environ Microbiol 52(4):838–841

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brimhall GH, Chadwick OA, Lewis CJ et al (1992) Deformational mass transport and invasive processes in soil evolution. Science 255:695–702

    Article  CAS  PubMed  Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154(2):275–304

    Article  Google Scholar 

  • Carnahan JE, Mortenson LE, Mower HF et al (1960) Nitrogen fixation in cell-free extracts of Clostridium pasteurian. Biochim Biophys Acta 44:520–535

    Article  CAS  PubMed  Google Scholar 

  • Chanda S, Matai S, Chakrabatri S (1987) Deproteinized leaf juice as a medium for growth of Rhizobium. Indian J Exp Biol 25:573–575

    CAS  PubMed  Google Scholar 

  • Chang CH, Yang SS (2009) Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation. Bioresour Technol 100:1648–1658

    Article  CAS  PubMed  Google Scholar 

  • Coelho LF, de Lima CJB, Rodovalho CM et al (2011) Lactic acid production by new Lactobacillus plantarum LMISM6 grown in molasses: optimization of medium composition. Braz J Chem Eng 28(1):201–203

    Article  Google Scholar 

  • Cooper J (2004) Multiple responses of rhizobia to flavonoids during legume root infection. In: Callow JA (ed) Advances in botanical research incorporating advances in plant pathology. Academic, London, pp 1–62

    Google Scholar 

  • Demain AL (2000) Microbial biotechnology. Trends Biotechnol 18(1):26–31

    Article  CAS  PubMed  Google Scholar 

  • Dobereiner J, Day JM (1976) Associative symbioses in tropical grasses: characterization of microorganisms and dinitrogen fixing sites. In: Newton WE, Nymans CJ (eds) Proceedings of the first international symposium on nitrogen fixation. Washington State University Press, Pullman, pp 518–538

    Google Scholar 

  • Dodd IC, Ruiz-Lozano JM (2012) Microbial enhancement of crop resource use efficiency. Curr Opin Biotechnol 23:236–242

    Article  CAS  PubMed  Google Scholar 

  • Doroshenko EV, Bulygina ES, Spiridonova EM et al (2007) Isolation and characterization of nitrogen-fixing bacteria of the genus Azospirillum from the soil of a sphagnum peat bog. Mikrobiologiia 76(1):107–115

    CAS  PubMed  Google Scholar 

  • Douds DD, Nagahashi G, Pfeffer PE et al (2005) On-farm production and utilization of Arbuscular mycorrhizal fungus inoculum. Can J Plant Sci 85:15–21

    Article  Google Scholar 

  • Duraraj P, Maniarasan U, Nagarajan N (2016) Study of growth and yield of cluster bean in alkaline soil using organic manure and biofertilizers. Int J Pl An and Env Sci 6(2):22–27

    CAS  Google Scholar 

  • Estrella MJ, Pieckenstain FL, Marina M et al (2004) Cheese whey: an alternative growth and protective medium for Rhizobium loti cells. J Ind Microbiol Biotechnol 31:122–126

    Article  CAS  PubMed  Google Scholar 

  • FCO (1985) Biofertilizers and Organic Fertilizers in Fertilizer (Control) Order, 1985, National Centre of Organic Farming, Department of Agriculture and Cooperation, Ministry of Agriculture, Govt of India. http://ncof.dacnet.nic.in/Training_manuals/Training_manuals_in_English/BF_and_OF_in_FCO.pdf. Accessed 2 Oct 2017

  • Fox AR, Soto G, Valverde C et al (2016) Major cereal crops benefit from biological nitrogen fixation when inoculated with the nitrogen-fixing bacterium Pseudomonas protegens Pf-5 X940. Environ Microbiol 18(10):3522–3534

    Article  CAS  PubMed  Google Scholar 

  • Franche C, Lindstrom K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321(1–2):35–59

    Article  CAS  Google Scholar 

  • Gandora V, Gupta RD, Bhardwaj KKR (1998) Abundance of Azotobacter in great soil groups of North-West Himalayas. J Indian Soc Soil Sci 46(3):379–383

    Google Scholar 

  • Ghany TMA, Alawlaqi MM, Al Abboud MA (2013) Role of biofertilizers in agriculture: a brief review. Mycopath 11(2):95–101

    Google Scholar 

  • Ghosh N (2004) Promoting bio-fertilizers in Indian agriculture. Econ Polit Wkly 39(52):5617–5625

    Google Scholar 

  • Glick BR, Todorovic B, Czarny J et al (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Gomare KS, Mese M, Shetkar Y (2013) Isolation of Azotobacter and cost effective production of biofertilizer. Indian J Appl Res 3(5):54–56

    Article  Google Scholar 

  • Gurikar C, Naik MK, Sreenivasa MY (2016) Azotobacter: PGPR activities with special reference to effect of pesticides and biodegradation. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, vol 1. Springer, New Delhi, pp 229–244

    Chapter  Google Scholar 

  • Hameed S, Yasmin S, Malik S et al (2004) Rhizobium, Bradyrhizobium and Agrobacterium strains isolated from cultivated legumes. Biol Fertil Soils 39(3):179–185

    Article  Google Scholar 

  • Harrison MJ, van Buuren ML (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378:626–629

    Article  CAS  PubMed  Google Scholar 

  • Hellriegel H, Wilfarth H (1888) Untersuchungenüber die Stickstoffnahrung der Gramineen und Leguminosen. Beilageheftzu der Zeitschrift des Vereinsfür die Rübenzucker-Industrie des DeutschenReiches, Bu’chdruckerei der “Post,” Kayssler & Co, Berlin

    Google Scholar 

  • Herrmann L, Lesueur D (2013) Challenges of formulation and quality of biofertilizers for successful inoculation. Appl Microbiol Biotechnol 97(20):8859–8873

    Article  CAS  PubMed  Google Scholar 

  • Jaga PK, Upadhyay VB (2013) Effect of FYM, biofertilizer and chemical fertilizers on wheat. Asian J Soil Sci 8(1):185–188

    Google Scholar 

  • Jain SK, Pathak DV, Sharma HR (2000) Alternate C substrate for mass production of Rhizobium inoculants. Haryana Agric Univ J Res 30:1–6

    Google Scholar 

  • Javaid A (2009) Arbuscular mycorrhizal mediated nutrition in plants. J Plant Nutr 32(10):1595–1618

    Article  CAS  Google Scholar 

  • Jayaraj J, Yi H, Liang GH et al (2004) Foliar application of Bacillus subtilis AUBS 1 reduces sheath blight and triggers defense mechanisms in rice. J Plant Dis Protect 111(2):115–125

    Article  CAS  Google Scholar 

  • Kannaiyan S, Kumar K (2005) Azolla biofertilizers for sustainable rice production. Daya Publishing House, New Delhi

    Google Scholar 

  • Kapulnic Y, Kigel J, Nur I et al (1981) Effect of Azospirillum inoculation on some growth parameters and n content of wheat, sorghum and panicum. Plant Soil 61:65–70

    Article  Google Scholar 

  • Kaushik BD (2014) Developments in Cyanobacterial biofertilizer. Proc Indian Nat Sci Acad 80(2):379–388

    Article  Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1998) Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol Fertil Soils 26:79–87

    Article  CAS  Google Scholar 

  • Klironomos JN, Hart MM (2002) Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. Mycorrhiza 12:181–184

    Article  PubMed  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In Proceedings of the 4th international conference on plant pathogenic bacteria. Station de Pathologie Végétale et de Phytobactériologie, anger, 27 August−2 September

    Google Scholar 

  • Kobiler D, Cohen-Sharon A, Tel-Or E (1981) Recognition between the N2-fixing Anabaena and the water fern Azolla. FEBS Lett 133:157–160

    Article  CAS  Google Scholar 

  • Kukreja K, Suneja S, Goyal S et al (2004) Phytohormone production by Azotobacter-a review. Agric Rev 25(1):70–75

    Google Scholar 

  • Kumar A, Kumari B, Mallick MA (2016) Phosphate solubilizing microbes: an effective and alternative approach as biofertilizers. Int J Pharm Pharm Sci 8(2):37–40

    Google Scholar 

  • Kure AM, Patil SR, Jadhao VG (2016) Performance evaluation of developed lab scale fermenter. Int J Agric Engg 9(2):202–209

    Google Scholar 

  • Lavania M, Nautiyal CS (2013) Solubilization of tricalcium phosphate by temperature and salt tolerant Serratia marcescens NBRI1213 isolated from alkaline soils. Afr J Microbiol Res 7(34):4403–4413. https://doi.org/10.5897/AJMR2013.5773

    Google Scholar 

  • Lazcano C, Barrios-Masias FH, Jackson LE (2014) Arbuscular mycorrhizal effects on plant water relations and soil greenhouse gas emissions under changing moisture regimes. Soil Biol Biochem 74:184–192

    Article  CAS  Google Scholar 

  • Leo Daniel AE, Venkateswarlu B, Suseelendra D et al (2013) Effect of polymeric additives, adjuvants, surfactants on survival, stability and plant growth promoting ability of liquid bioinoculants. J Plant Physiol Pathol 01(02):1–5. https://doi.org/10.4172/2329-955X.1000105

    Google Scholar 

  • Li XX, Liu Q, Liu XM et al (2016) Using synthetic biology to increase nitrogenase activity. Microb Cell Factories 15:43

    Article  CAS  Google Scholar 

  • Maier RJ, Moshiri F (2000) Role of the Azotobacter vinelandii nitrogenase-protective shethna protein in preventing oxygen mediated cell death. J Bacteriol 182(13):3854–3857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malusa E, Sas-Paszt L, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J 2012:1. https://doi.org/10.1100/2012/491206

    Article  Google Scholar 

  • Mia MAB, Shamsuddin ZH (2010) Rhizobium as a crop enhancer and biofertilizer for increased cereal production. Afr J Biotech 9:6001–6009

    Google Scholar 

  • Mishra DJ, Singh R, Mishra UK et al (2013) Role of bio-fertilizer in organic agriculture: a review. Res J Recent Sci 2(1):39–41

    CAS  Google Scholar 

  • Moore D, Robson GD, Trinci APJ (2011) 21st century guidebook to fungi. Cambridge University Press, New York

    Book  Google Scholar 

  • Morgan JAW, Bending GD, White PJ (2005) Biological costs and benefits to plant–microbe interactions in the rhizosphere. J Exp Bot 56(417):1729–1739

    Article  CAS  PubMed  Google Scholar 

  • Nagappan R (2013) Biopesticides and biofertilizers: ecofriendly sources for sustainable agriculture. J Biofertil Biopestici 4:1–2. https://doi.org/10.4172/2155-6202.1000e112

    Google Scholar 

  • Nalawde AA, Bhalerao SA (2015) Comparative account of effect of biofertilizers on the growth and biochemical parameters of Vigna mungo (L. Hepper). Int J Adv Res Biol Sci 2(5):62–66

    CAS  Google Scholar 

  • Nayak T, Patangray AJ (2015) Biofertilizer-beneficial for sustainable agriculture and improving soil fertility. Asia J Multidiscip Stud 3(2):189–194

    Google Scholar 

  • Nehra V, Choudhary M (2015) A review on plant growth promoting rhizobacteria acting as bioinoculants and their biological approach towards the production of sustainable agriculture. J Appl Nat Sci 7:540–556

    Google Scholar 

  • Nobbe F, Hiltner L (1895) Inoculation of the soil for cultivating leguminous plants. US Patent 5,70,813, 3 November 1896

    Google Scholar 

  • Okon Y, Albercht SL, Burris RH (1977) Methods for growing Spirillum lipoferum and for counting it in pure culture and in association with plants. Appl Environ Microbiol 33:85–88

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey A, Selvakumar P, Soccol CR et al (1999) Solid state fermentation for the production of industrial enzymes. Curr Sci 77(1):149–162

    CAS  Google Scholar 

  • Parthiban K, Manikandan S, Ganesapandian S (2011) Production of cellulose I microfibrils from Rhizobium sp. and its wound healing activity on mice. Asian J Applied Sci 4:247–254

    Article  CAS  Google Scholar 

  • Pathak DV, Kumar M (2016) Microbial inoculants as biofertilizers and biopesticides. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, vol 1. Springer, New Delhi, pp 197–209

    Chapter  Google Scholar 

  • Patil N, Choudhri SD, Gawade SS et al (2013) Effect of different C sources on production and stability of biofertilizer. Int J of Adv Biotec and Res 4(1):85–95

    Google Scholar 

  • Paul D, Nair S (2008) Stress adaptations in a plant growth promoting Rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol 48:1–7

    Article  CAS  Google Scholar 

  • Peng X, Börner RA, Nges IA et al (2014) Impact of bioaugmentation on biochemical methane potential for wheat straw with addition of Clostridium cellulolyticum. Bioresour Technol 152:567–571

    Article  CAS  PubMed  Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil connection with the vital activity of some microbial species. Microbiologia 17:362–370

    CAS  Google Scholar 

  • Pindi PK, Satyanarayana SDV (2012) Liquid microbial consortium a potential tool for sustainable soil health. J Biofertil Biopestici 03:124. https://doi.org/10.4172/2155-6202.1000124

    Google Scholar 

  • Podile AR, Kishore GK (2006) Plant growth promoting rhizobacteria. In: Gnanamanickam SS (ed) Plant associated bacteria. Springer, Dordrecht, pp 195–230

    Chapter  Google Scholar 

  • Ponmurugan P, Gopi C (2006) In vitro production of growth regulators and phosphatase activity by phosphate solubilizing bacteria. Afr J Biotechnol 5:348–350

    CAS  Google Scholar 

  • Prasad MP (2014) Optimization of fermentation conditions of phosphate solubilization bacteria – a potential bio-fertilizer. Merit Res J Microbiol Biol Sci 2(2):31–35

    CAS  Google Scholar 

  • Prasanna R, Nain L, Pandey AK et al (2012) Microbial diversity and multidimensional interactions in the rice ecosystem. Arch Agron Soil Sci 58(7):723–744

    Article  Google Scholar 

  • Rafael A, Juan Cesar FO, Leonardo C (2017) Metabolic engineering of a diazotrophic bacterium improves ammonium release and biofertilization of plants and microalgae. Metab Eng 40:59. https://doi.org/10.1016/j.ymben.2017.01.002

    Article  CAS  Google Scholar 

  • Reddy KR, Reddy GB, Reddy MR et al (1977) Effects of Azotobacter inoculation and nitrogen levels on yield of sorghum. Indian J Agron 22(4):203–205

    Google Scholar 

  • Richter DD, Markewitz D (1995) How deep is soil? Bio Sci 45:600–609

    Google Scholar 

  • Rillig MC, Aguilar-Trigueros CA, Bergmann J et al (2015) Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytol 205:1385–1388

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues PE, Rodregues LS, Oliveira ALM et al (2008) Azospirillum amazonense inoculation: effects on growth, yield and N2-fixation of rice (Oryza sativa L.) Plant Soil 302:249–261

    Article  CAS  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  CAS  PubMed  Google Scholar 

  • Rosenberger RF, Elsden SR (1960) The yields of Streptococcus faecalis grown in continuous culture. J Gen Microbiol 22:726–739

    Article  CAS  PubMed  Google Scholar 

  • Roychowdhury D, Paul M, Kumar Banerjee S (2015) Isolation, identification and characterization of phosphate solubilising bacteria from soil and the production of biofertilizer. Int J Curr Microbiol App Sci 4(11):808–815

    Google Scholar 

  • Saithi S, Borg J, Nopharatana M et al (2016) Mathematical modelling of biomass and enzyme production kinetics by Aspergillus niger in solid-state fermentation at various temperatures and moisture contents. J Microb Biochem Technol 8:123–130

    Article  Google Scholar 

  • Secilia J, Bagyaraj DJ (1987) Bacteria and actinomycetes associated with pot cultures of vesicular arbuscular mycorrhizas. Can J of Microbiol 33:1069–1073

    Article  Google Scholar 

  • Senoo K, Kaneko M, Taguchi R et al (2002) Enhanced growth and nodule occupancy of red kidney bean and soybean inoculated with soil aggregate-based inoculants. Soil Sci Plant Nutr 48(2):251–259

    Article  Google Scholar 

  • Sethi SK, Adhikary SP (2012) Cost effective pilot scale production of biofertilizer using Rhizobium and Azotobacter. Afr J Biotechnol 11(70):13490–13493

    Article  Google Scholar 

  • Shanware A, Kalkar S, Trivedi M (2014) Potassium solublisers: occurrence, mechanism and their role as competent biofertilizers. Int J Curr Microbiol App Sc 3(9):622–629

    Google Scholar 

  • Sharma S, Pant D, Singh S et al (2007) Mycorrhizae in Indian agriculture. In: Hamel C, Plenchette C (eds) Mycorrhizae in crop production. Haworth Press, Binghampton, pp 239–291

    Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH et al (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2:587. https://doi.org/10.1186/2193-1801-2-587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • Singh AK, Gauri C, Bhatt RP et al (2012) Comparative study of carrier based materials for rhizobium culture formulation. Indian J Agric Res 46(4):344–349

    Google Scholar 

  • Singh S, Singh BK, Yadav SM et al (2014) Potential of biofertilizers in crop production in Indian agriculture. Amer J Plant Nutr Fertil Tech 4(2):33–40

    Article  Google Scholar 

  • Singh M, Dotaniya ML, Mishra A et al (2016a) Role of biofertilizers in conservation agriculture. In: Bisht JK, Meena VS, Mishra PK et al (eds) Conservation agriculture: an approach to combat climate change in Indian Himalaya. Springer, Singapore, pp 113–134

    Chapter  Google Scholar 

  • Singh JS, Kumar A, Rai AN et al (2016b) Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol 7:529. https://doi.org/10.3389/fmicb.2016.00529

    PubMed  PubMed Central  Google Scholar 

  • Stewart WDP (1969) Biological and ecological aspects of nitrogen fixation by free-living microorganisms. Proc R Soc 172:367–388

    Article  CAS  Google Scholar 

  • Subba Rao NS (1977) Soil microorganisms and plant growth. Oxford/IBH Publishing Co, New Delhi

    Google Scholar 

  • Subramaniyam R, Vimala R (2012) Solid state and submerged fermentation for the production of bioactive substances: a comparative study. Int J Sci Nat 3(3):480–486

    CAS  Google Scholar 

  • Tao GC, Tian SJ, Cai MY et al (2008) Phosphate solubilizing and mineralizing abilities of bacteria isolated from soils. Pedosphere 18(4):515–523

    Article  CAS  Google Scholar 

  • Tarrand JJ, Krieg NR, Döbereiner J (1978) A taxonomic study of the Spirillum lipoferum group, with description of a new genus, Azospirillum gen. nov., and two species, Azospirillum lipoferum (Beijerinck) com nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24:967–980

    Article  CAS  PubMed  Google Scholar 

  • Tensingh Baliah N, Jeeva P (2016) Isolation, identification and characterization of phosphate solubilizing bacteria isolated from economically important tree species. Int J Sci Nat 7(4):870–876

    Google Scholar 

  • Trivedi P, Pandey A (2007) Application of immobilized cells of Pseudomonas putida to solubilise insoluble phosphate in broth and soil conditions. J Plant Nutr Soil Sci 170:629–631

    Article  CAS  Google Scholar 

  • Trivedi M, Kalkar S, Shanware A (2016) Isolation, characterization & development of liquid formulations of potassium solubilizing fungi. Int J Adv Res 4(9):999–1003

    Article  Google Scholar 

  • Vaishampayan A, Sinha RP, Hader DP et al (2001) Cyanobacterial biofertilizers in rice agriculture. Bot Rev 67(4):453–516

    Article  Google Scholar 

  • van Rhijn P, Vanderleyden J (1995) The Rhizobium-plant symbiosis. Microbiol Rev 59(1):124–142

    PubMed  PubMed Central  Google Scholar 

  • van Rossum DV, Schuurmans FP, Gillis M et al (1995) Genetic and phenotypic analysis of Bradyrhizobium strains nodulating Peanut (Arachis hypogaea L.) roots. Appl Environ Microbiol 61:1599–1609

    PubMed  PubMed Central  Google Scholar 

  • Verma M, Sharma S, Prasad R (2011) Liquid biofertilizers: advantages over carrier- based biofertilizers for sustainable crop production. Newsl Intern Soc Environ Bot 17:2

    Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Waheed A, Afzal A, Sultan T et al (2014) Isolation and biochemical characterization of rhizobium from pea crop at Swabi. Int J Biosci 4(8):231–240

    CAS  Google Scholar 

  • Wani SA, Chand S, Ali T (2013) Potential use of Azotobacter chroococcum in crop production: an overview. Curr Agri Res 1(1):35–38. 10.12944/CARJ.1.1.04

    Article  Google Scholar 

  • Wani SA, Chand S, Wani MA et al (2016) Azotobacter chroococcum–a potential biofertilizer in agriculture: an overview. In: Kakeem KR, Akhtar J, Sabir M (eds) Soil science: agricultural and environmental prospectives. Springer, Cham, pp 333–348

    Chapter  Google Scholar 

  • Wei GH (2002) Rhizobium indigoferae sp. nov. and Sinorhizobium kummerowiae sp. nov., respectively isolated from Indigofera spp. and Kummerowia stipulacea. Int J Syst Evol Microbiol 52(6):2231–2223

    CAS  PubMed  Google Scholar 

  • Weir BS (2016) The current taxonomy of rhizobia http://www.rhizobia.co.nz/taxonomy/rhizobia.html. Accessed 4 Feb 2017

  • Yadav AK, Chandra K (2014) Mass production and quality control of microbial inoculants. Proc Indian Natn Sci Acad 80(2):483–489

    Article  Google Scholar 

  • Yehya M, Hamze M, Mallat H et al (2013) Prevalence and antibiotic susceptibility of Bacteroides fragilis group isolated from stool samples in North Lebanon. Braz J Microbio l44(3):807–812

    Article  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63(4):968–89, table of contents

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaiadan BK, Motorin DN, Baimakhanova GB et al (2014) Promising microbial consortia for producing biofertilizers for rice fields. Mikrobiologiia 83(4):467–474

    CAS  PubMed  Google Scholar 

  • Zohar-Perez C, Chet I, Nussinovitch A (2005) Mutual relationships between soils and biological carrier systems. Biotechnol Bioeng 92(1):54–60

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harish Suthar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suthar, H., Hingurao, K., Vaghashiya, J., Parmar, J. (2017). Fermentation: A Process for Biofertilizer Production. In: Panpatte, D., Jhala, Y., Vyas, R., Shelat, H. (eds) Microorganisms for Green Revolution. Microorganisms for Sustainability, vol 6. Springer, Singapore. https://doi.org/10.1007/978-981-10-6241-4_12

Download citation

Publish with us

Policies and ethics