Skip to main content

Molecular Electronics

  • Chapter
  • First Online:
Nanomaterials and Their Applications

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 84))

Abstract

Molecular electronics aim to create a functional electronic device using single or small assembly of molecules. It is believed that molecular electronics, not only will meet the increasing demand of more speed and more storage, but also provide a test bed to investigate mesoscopic transport phenomena and different properties at molecular level. Though there are several advantages in adopting single molecule as the active element in nanodevices, but contacting molecule with macroscopic contact in a circuit still remains a major challenge, as the conventional lithography-based contacting techniques cannot form metal contacts to a single molecule. Moreover, the absence of suitable imaging techniques at subnanometer level to look into single metal-molecule junction makes it even harder challenge. In last decade, several novel contacting techniques using nanolithography have been developed. However, the evidence that a molecule has been docked and contacted between two metal electrodes successfully can only be provided by measuring the current transport through the junctions. Out of the different mesoscopic devices in the length scale of 1–3 nm, it has been emphasized that molecular devices based on electrical break junction will be most suitable for electrical characterization with a prospect to use them in future circuits based on single molecule-based nanodevices. These investigations on the electrical transport through single or small assembly of molecules should be extremely useful for understanding quantum transport processes through the molecule, the device fabrication processes at nanoscale, and the roadmap for future nanoelectronics are essential for overcoming the “red brick wall” of Si-based microelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.E. Moore, Electronics 38, 114–117 (1965)

    Google Scholar 

  2. A. Aviram, M.A. Ratner, Chem. Phys. Lett. 29, 277–283 (1974)

    Article  Google Scholar 

  3. R.M. Metzger, B. Chen, U. Höpfner, M.V. Lakshmikantham, D. Vuillaume, T. Kawai, X.L. Wu, H. Tachibana, T.V. Hughes, H. Sakurai, J.W. Baldwin, C. Hosch, M.P. Cava, L. Brehmer, G.J. Ashwell, J. Am. Chem. Soc. 119, 10455–10466 (1997)

    Article  Google Scholar 

  4. Dong Xiang, Xiaolong Wang, Chuancheng Jia, Takhee Lee, Xuefeng Guo, Chem. Rev. 116, 4318–4440 (2016)

    Article  Google Scholar 

  5. R. Lloyd Carroll, C.B. Gorman, Angew. Chem. Int. Ed. 41, 4378–4400 (2002)

    Article  Google Scholar 

  6. D. Xiang, X. Wang, C. Jia, T. Lee, X. Guo, Chem. Rev. 116, 4318–4440 (2016)

    Article  Google Scholar 

  7. R.M. Metzger. Chem. Rev. 115, 5056–5115 ( 2015)

    Google Scholar 

  8. Z. Wei, M. Kondratenko, Lê H. Dao, D.F. Perepichka, J. Am. Chem. Soc. 128, 3134–3135 (2006)

    Article  Google Scholar 

  9. C. Krzeminski, C. Delerue, G. Allan, D. Vuillaume, R.M. Metzger, Phys. Rev. B 64, 085405–085410 (2001)

    Article  Google Scholar 

  10. S. Datta, W. Tian, S. Hong, R. Reifenberger, J.I. Henderson, C.P. Kubiak, Phys. Rev. Lett. 79, 2530–2533 (1997)

    Article  Google Scholar 

  11. M. Elbing, R. Ochs, M. Koentopp, M. Fischer, C. von Hänisch, F. Weigend, F. Evers, H.B. Weber, M. l Mayor. PNAS 102, 8815–8820 (2005)

    Google Scholar 

  12. P.E. Kornilovitch, A.M. Bratkovsky, R.S. Williams, Phys. Rev. B 66, 165436–165446 (2002)

    Article  Google Scholar 

  13. F. Zahid, A.W. Ghosh, M. Paulsson, E. Polizzi, S. Datta, Phys. Rev. B 70, 245317–245321 (2004)

    Article  Google Scholar 

  14. E. Lörtscher, B. Gotsmann, Y. Lee, L. Yu, C. Rettner, H. Riel, ACS Nano 6, 4931–4939 (2012)

    Article  Google Scholar 

  15. Y. Wada, T. Uda, M. Lutwyche, S. Kondo, S. Heike, J. Appl. Phys. 74, 7321–7328 (1993)

    Article  Google Scholar 

  16. R.A. Bissell, E. Cordova, A.E. Kaifer, J.F. Stoddart, Nature 369, 133–137 (1994)

    Article  Google Scholar 

  17. C.P. Collier, G. Mattersteig, E.W. Wong, Y. Luo, K. Beverly, J. Sampaio, F.M. Raymo, J.F. Stoddart, J.R. Heath, Science 289, 1172–1175 (2000)

    Article  Google Scholar 

  18. J. Chen, M.A. Reed, A.M. Rawlett, J.M. Tour, Science 286, 1550–1552 (1999)

    Article  Google Scholar 

  19. J. Chen, W. Wang, M.A. Reed, A.M. Rawlett, D.W. Price, J.M. Tour, Appl. Phys. Lett. 70, 1224–1226 (2000)

    Article  Google Scholar 

  20. J.M. Seminario, A.G. Zacarias, J.M. Tour, J. Am. Chem. Soc. 122, 3015–3020 (2000)

    Article  Google Scholar 

  21. A.W. Ghosh, F. Zahid, S. Datta, R.R. Birge, Chem. Phys. 281, 225–230 (2002)

    Article  Google Scholar 

  22. Y.Q. Xue, S. Datta, S. Hong, R. Reifenberger, J.I. Henderson, C.P. Kubiak, Phys. Rev. B 59, R7852–R7855 (1999)

    Article  Google Scholar 

  23. Y. Karzazi, J. Cornil, J.L. Bre.das. J. Am. Chem. Soc. 123, 10076–10084 (2001)

    Google Scholar 

  24. S. Datta, W. Tian, S. Hong, R. Reifenberger, J.I. Henderson, C.P. Kubiak, Phys. Rev. Lett. 79, 2530–2533 (1997)

    Article  Google Scholar 

  25. E.G. Emberly, G. Kirczenow, Phys. Rev. Lett. 91, 188301–188304 (2003)

    Article  Google Scholar 

  26. D.J. Wold, C.D. Frisbie, J. Am. Chem. Soc. 123, 5549–5556 (2001)

    Article  Google Scholar 

  27. J.G. Kushmerick, D.B. Holt, J.C. Yang, J. Naciri, M.H. Moore, R. Shashidhar, Phys. Rev. Lett. 89, 086802–086804 (2002)

    Article  Google Scholar 

  28. M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J.M. Tour, Science 278, 252–254 (1997)

    Article  Google Scholar 

  29. C. Kergueris, J.P. Bourgoin, S. Palacin, D. Esteve, C. Urbina, M. Magoga, C. Joachim, Phys. Rev. B 59, 12505–12513 (1999)

    Article  Google Scholar 

  30. W. Linag, M.P. Shores, M. Bockrath, J.R. Long, H. Park, Nature 417, 725–729 (2002)

    Article  Google Scholar 

  31. J. Park, A.N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish, J.R. Petta, M. Rinkoski, J.P. Sethna, H.D. Abruña, P.L. McEuen, D.C. Ralph, Nature 417, 722–725 (2002)

    Article  Google Scholar 

  32. L.H. Yu, D. Natelson, Nano Lett. 4, 79–83 (2004)

    Article  Google Scholar 

  33. K.I. Bolotin, F. Kuemmeth, A.N. Pasupathy, D.C. Ralph, Appl. Phys. Lett. 84, 3154–3156 (2004)

    Article  Google Scholar 

  34. H. Park, A.K.L. Lim, A.P. Alivisatos, J. Park, P.L. McEuen, Appl. Phys. Lett. 75, 301–303 (1999)

    Article  Google Scholar 

  35. F. Morpurgo, C.M. Marcus, D.B. Robinson, Appl. Phys. Lett. 74, 2084–2086 (1999)

    Article  Google Scholar 

  36. Z. Li, H.X. He, N.J. Tao, Appl. Phys. Lett. 77, 3995–3997 (2000)

    Article  Google Scholar 

  37. M.M. Deshmukh, A.L. Prieto, Q. Gu, H. Park, Nano Lett. 3, 1383–1385 (2003)

    Article  Google Scholar 

  38. T.B. Gabrielson, I.E.E.E. Trans, Electron. Devices 40, 903–909 (1993)

    Article  Google Scholar 

  39. S. Ghosh, H. Halimun, A.K. Mahapatro, J. Choi, S. Lodha, D. Janes, Appl. Phys. Lett. 87, 233509-3 (2005)

    Article  Google Scholar 

  40. S.M. Iqbal, G. Balasundaram, S. Ghosh, D.E. Bergstrom, R. Bashir, Appl. Physics Lett. 86, 153901–153903 (2005)

    Article  Google Scholar 

  41. A.K. Mahapatro, S. Ghosh, D.B. Janes, I.E.E.E. Tran, NANO 5, 232–237 (2006)

    Google Scholar 

  42. E.G. Emberley, G. Kirczenow, Phys. Rev. B 64, 235412–235419 (2001)

    Article  Google Scholar 

  43. J. Reichert, R. Ochs, D. Beckmann, H.B. Weber, M. Mayor, H.V. Löhneysen, Phys. Rev. Lett. 88, 176804–176807 (2002)

    Article  Google Scholar 

  44. H. Park, A.K.L. Lim, A.P. Alivisatos, J. Park, P.L. McEuen, Appl. Phys. Lett. 75, 301–304 (1999)

    Article  Google Scholar 

  45. J. Park et al., Nature (London) 417, 722–725 (2002)

    Article  Google Scholar 

  46. W. Linag, M.P. Shores, M. Bockrath, J.R. Long, H. Park, Nature 417, 725–729 (2002)

    Article  Google Scholar 

  47. J. Park et al., Nature 417, 722–725 (2002)

    Article  Google Scholar 

  48. H. Park, A.K.L. Lim, A.P. Alivisatos, J. Park, P.L. McEuen, Appl. Phys. Lett. 75, 301–303 (1999)

    Article  Google Scholar 

  49. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969)

    Google Scholar 

  50. C.Z. Li, H.X. He, N.J. Tao, Appl. Phys. Lett. 77, 3995–3997 (2000)

    Article  Google Scholar 

  51. C. Kergueris, J.P. Bourgoin, S. Palacin, D. Esteve, C. Urbina, M. Magoga, C. Joachim, Phys. Rev. B 59, 12505–12513 (1999)

    Article  Google Scholar 

  52. B. Xu, N.J. Tao, Science 301, 1221–1223 (2003)

    Article  Google Scholar 

  53. X. Xiao, B. Xu, N.J. Tao, Nano Lett. 4, 267–271 (2004)

    Article  Google Scholar 

  54. X.D. Cui et al., Science 294, 571–574 (2001)

    Article  Google Scholar 

  55. W. Tian et al., J. Chem. Phys. 109, 2874–2882 (1998)

    Article  Google Scholar 

  56. P.S. Damle, A.W. Ghosh, S. Datta, Chem. Phys. 281, 171–187 (2002)

    Article  Google Scholar 

  57. P.S. Damle, A.W. Ghosh, S. Datta, Phys. Rev. B 64, 201403–201406 (2001)

    Article  Google Scholar 

  58. K.-H. Yoo, D.H. Ha, J.-O. Lee, J.W. Park, J. Kim, J.J. Kim, H.-Y. Lee, T. Kawai, H.Y. Choi. Phys. Rev. Lett. 87, 198102–198105 (2001)

    Google Scholar 

  59. Ch. Adessi, S. Walch, M.P. Anantram, Phys. Rev. B 67, 081405–081408 (2003)

    Article  Google Scholar 

  60. M. Di Ventra, M. Zwolak, in DNA Electronics in Encyclopedia of Nanoscience and Nanotechnology, ed. by H.S. Nalwas (American Scienti®c Publishers, California, 2004)

    Google Scholar 

  61. Lintao Cai, Hitoshi Tabata, Tomoji Kawai, Appl. Phys. Lett. 77, 3105–3106 (2000)

    Article  Google Scholar 

  62. H.W. Fink, C. Schönenberger, Nature 398, 407–410 (1999)

    Article  Google Scholar 

  63. Y. Otsuka, H. Lee, J. Gu, J. Lee, K.-H. Yoo, H. Tanaka, H. Tabata, T. Kawai, Jpn. J. Appl. Phys. 41, 891–894 (2002)

    Article  Google Scholar 

  64. C. Jiaa, X. Guo, Chem. Soc. Rev. 42, 5642–5660 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhasis Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ghosh, S. (2018). Molecular Electronics. In: Khan, Z. (eds) Nanomaterials and Their Applications. Advanced Structured Materials, vol 84. Springer, Singapore. https://doi.org/10.1007/978-981-10-6214-8_9

Download citation

Publish with us

Policies and ethics