Skip to main content

Role of Nanostructured Materials Toward Remediation of Heavy Metals/Metalloids

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 84))

Abstract

In recent scenarios, the development of nanotechnology with novel size, shape, and surface dependent properties has revealed incredible prospective for the treatment of environmental problems especially toxic heavy metals from contaminated water. As compared with traditional materials, a nanosized particle exhibits to a large extent efficiency and faster remediation rates in water treatment. Many kinds of nanomaterials such as carbon, nanometal/metal oxides, and polymer based have high selectivity and adsorption potential for the remediation of heavy metals/metalloids such as As5+, As3+, Pb2+, Cr3+, Cr6+, Hg2+, Co2+, Ni2+, Cd2+, and Cu2+ from contaminated water. This chapter gives a widespread analysis on the enduring research and progress activities in the field of remediation of toxic heavy metals/metalloids from contaminated water by using nanomaterials in order to achieve environmental detoxification, using adsorption process. We have also discussed the essential aspects of heavy metals problems on environment; their effects on human health through polluted water are reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. X. Qu, P.J. Alvarez, Q. Li, Applications of nanotechnology in water and wastewater treatment. Water Res. 47(12), 3931–3946 (2013)

    Article  Google Scholar 

  2. T. Rajeswari, N. Sailaja, Impact of heavy metals on environmental pollution. J. Chem. Pharm. Sci. 42(3), 175–181 (2014)

    Google Scholar 

  3. R. Kundra, R. Sachdeva, S. Attar, M. P, Studies on the removal of heavy metal ions from industrial waste water by using titanium electrodes. J Curr. Chem. Pharm. Sc. 2(1), 11 (2012)

    Google Scholar 

  4. M. Jamil, M.S. Zia, M. Qasim, Contamination of agro-ecosystem and human health hazards from wastewater used for irrigation. J. Chem. Soc. Pak. 32(3), 370–378 (2010)

    Google Scholar 

  5. S. Khan, Q. Cao, Y. Zheng, Y. Huang, Y. Zhu, Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing. China. Environ. pollut. 152(3), 686–692 (2008)

    Article  Google Scholar 

  6. M.S. Mauter, M. Elimelech, Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol. 42(16), 5843–5859 (2008)

    Article  Google Scholar 

  7. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review. J. Environ. Manage. 92(3), 407–418 (2011)

    Article  Google Scholar 

  8. L.K. Wang, Y.-T. Hung, N.K. Shammas, Physicochemical treatment processes (Springer, 2005)

    Book  Google Scholar 

  9. M.E. Ersahin, H. Ozgun, R.K. Dereli, I. Ozturk, K. Roest, J.B. van Lier, A review on dynamic membrane filtration: materials, applications and future perspectives. Biores. Technol. 122, 196–206 (2012)

    Article  Google Scholar 

  10. Y. Xing, X. Chen, D. Wang, Electrically regenerated ion exchange for removal and recovery of Cr (VI) from wastewater. Environ. Sci. Technol. 41(4), 1439–1443 (2007)

    Article  Google Scholar 

  11. A. Bodalo-Santoyo, J. Gómez-Carrasco, E. Gomez-Gomez, F. Maximo-Martin, A. Hidalgo-Montesinos, Application of reverse osmosis to reduce pollutants present in industrial wastewater. Desalination 155(2), 101–108 (2003)

    Article  Google Scholar 

  12. I. Rykowska, W. Wasiak, J. Byra, Extraction of copper ions using silica gel with chemically modified surface. Chem. Pap. 62(3), 255–259 (2008)

    Google Scholar 

  13. F.C. Walsh, G.W. Reade, Electrochemical techniques for the treatment of dilute metal-ion solutions. Stud. Environ. Sci. 59, 3–44 (1994)

    Article  Google Scholar 

  14. G. Batley, Y. Farrar, Irradiation techniques for the release of bound heavy metals in natural waters and blood. Anal. Chim. Acta 99(2), 283–292 (1978)

    Article  Google Scholar 

  15. P. Zhang, H.H. Hahn, E. Hoffmann, Different behavior of iron (III) and aluminum (III) salts to coagulate silica particle suspension. Acta Hydrochim. Hydrobiol. 31(2), 145–151 (2003)

    Article  Google Scholar 

  16. V. Srivastava, C. Weng, V. Singh, Y. Sharma, Adsorption of nickel ions from aqueous solutions by nano alumina: kinetic, mass transfer, and equilibrium studies. J. Chem. Eng. Data 56(4), 1414–1422 (2011)

    Article  Google Scholar 

  17. D. Zamboulis, E.N. Peleka, N.K. Lazaridis, K.A. Matis, Metal ion separation and recovery from environmental sources using various flotation and sorption techniques. J. Chem. Technol. Biotechnol. 86(3), 335–344 (2011)

    Article  Google Scholar 

  18. J. Lee, S. Mahendra, P.J. Alvarez, Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano 4(7), 3580–3590 (2010)

    Article  Google Scholar 

  19. I. Ali, New generation adsorbents for water treatment. Chem. Rev. 112(10), 5073–5091 (2012)

    Article  Google Scholar 

  20. H. Pekey, D. Karakaş, M. Bakoglu, Source apportionment of trace metals in surface waters of a polluted stream using multivariate statistical analyses. Mar. Pollut. Bull. 49(9), 809–818 (2004)

    Article  Google Scholar 

  21. R. Verma, P. Dwivedi, Heavy metal water pollution-A case study. Recent Res. Sci. Technol. 5(5) (2013)

    Google Scholar 

  22. B.Z. Marg, in Hazardous metals and minerals pollution in India: Sources, toxicity and management, (A position paper, Indian National Science Academy, New Delhi, 2011)

    Google Scholar 

  23. S.K. Agarwal, Heavy metal pollution (APH publishing, India, 2009)

    Google Scholar 

  24. A.K. Shukla, Toxicity of heavy metals in the water samples of North-Eastern coal field region of Chhattisgarh. Dermatitis 5(25), 20 (2014)

    Google Scholar 

  25. H. Hu, Q. Jin, P. Kavan, A study of heavy metal pollution in China: Current status, pollution-control policies and countermeasures. Sustainability 6(9), 5820–5838 (2014)

    Article  Google Scholar 

  26. H. Bradl, Heavy metals in the environment: Origin, interaction and remediation (Academic Press, 2005)

    Google Scholar 

  27. R.A. Wuana, F.E. Okieimen, Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Isrn Ecol. (2011)

    Google Scholar 

  28. N. Pourang, Heavy metal bioaccumulation in different tissues of two fish species with regards to their feeding habits and trophic levels. Environ. Monit. Assess. 35(3), 207–219 (1995)

    Article  Google Scholar 

  29. X. Wang, Y. Guo, L. Yang, M. Han, J. Zhao, X. Cheng, Nanomaterials as sorbents to remove heavy metal ions in wastewater treatment. J. Environ. Anal. Toxicol. (2012)

    Google Scholar 

  30. X. Wang, T. Sato, B. Xing, S. Tao, Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci. Total Environ. 350(1), 28–37 (2005)

    Article  Google Scholar 

  31. L. Järup, Hazards of heavy metal contamination. Br. Med. Bull. 68(1), 167–182 (2003)

    Article  Google Scholar 

  32. J. Pronczuk, M. Bruné, F. Gore, Children’s environmental health in developing countries. Encycl. Environ. Health. 601–610 (2011)

    Google Scholar 

  33. S.R. Kanel, J.-M. Greneche, H. Choi, Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ. Sci. Technol. 40(6), 2045–2050 (2006)

    Article  Google Scholar 

  34. S.R. Kanel, B. Manning, L. Charlet, H. Choi, Removal of arsenic (III) from groundwater by nanoscale zero-valent iron. Environ. Sci. Technol. 39(5), 1291–1298 (2005)

    Article  Google Scholar 

  35. W.H. Organization, Guidelines for drinking-water quality (World Health Organization, Geneva, 2011) 2011

    Google Scholar 

  36. (BIS) BOIS. Indian standard drinking water speciation. New Delhi 110002 (2012)

    Google Scholar 

  37. P. Smedley, D. Kinniburgh, A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 17(5), 517–568 (2002)

    Article  Google Scholar 

  38. T.S. Choong, T. Chuah, Y. Robiah, F.G. Koay, I. Azni, Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination 217(1), 139–166 (2007)

    Article  Google Scholar 

  39. R.A. Goyer, Lead toxicity: current concerns. Environ. Health Perspect. 100, 177 (1993)

    Article  Google Scholar 

  40. H.E. Ratcliffe, G.M. Swanson, L.J. Fischer, Human exposure to mercury: a critical assessment of the evidence of adverse health effects. J. Toxicol. Environ. Health 49(3), 221–270 (1996)

    Article  Google Scholar 

  41. M. Castro-González, M. Méndez-Armenta, Heavy metals: implications associated to fish consumption. Environ. Toxicol. Pharmacol. 26(3), 263–271 (2008)

    Article  Google Scholar 

  42. X. Lv, J. Xu, G. Jiang, X. Xu, Removal of chromium (VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes. Chemosphere 85(7), 1204–1209 (2011)

    Article  Google Scholar 

  43. T. Liu, Z.-L. Wang, X. Yan, B. Zhang, Removal of mercury (II) and chromium (VI) from wastewater using a new and effective composite: pumice-supported nanoscale zero-valent iron. Chem. Eng. J. 245, 34–40 (2014)

    Article  Google Scholar 

  44. F. Pizarro, M. Olivares, R. Uauy, P. Contreras, A. Rebelo, V. Gidi, Acute gastrointestinal effects of graded levels of copper in drinking water. Environ. Health Perspect. 107(2), 117 (1999)

    Article  Google Scholar 

  45. K.E. Engates, H.J. Shipley, Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Environ. Sci. Pollut. Res. 18(3), 386–395 (2011)

    Article  Google Scholar 

  46. M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, Q. Zhang, Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J. Hazard. Mater. 211, 317–331 (2012)

    Article  Google Scholar 

  47. B. Pan, B. Pan, W. Zhang, L. Lv, Q. Zhang, S. Zheng, Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters. Chem. Eng. J. 151(1), 19–29 (2009)

    Article  Google Scholar 

  48. J. Ruparelia, S. Duttagupta, A. Chatterjee, S. Mukherji, Potential of carbon nanomaterials for removal of heavy metals from water. Desalination 232(1), 145–156 (2008)

    Article  Google Scholar 

  49. Y.-H. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan et al., Lead adsorption on carbon nanotubes. Chem. Phys. Lett. 357(3), 263–266 (2002)

    Article  Google Scholar 

  50. Y.-H. Li, Z. Di, J. Ding, D. Wu, Z. Luan, Y. Zhu, Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Res. 39(4), 605–609 (2005)

    Article  Google Scholar 

  51. J. Hu, C. Chen, X. Zhu, X. Wang, Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. J. Hazard. Mater. 162(2), 1542–1550 (2009)

    Google Scholar 

  52. K. Pillay, E. Cukrowska, N. Coville, Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution. J. Hazard. Mater. 166(2), 1067–1075 (2009)

    Article  Google Scholar 

  53. K. Pyrzyńska, M. Bystrzejewski, Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles. Colloids Surf., A 362(1), 102–109 (2010)

    Article  Google Scholar 

  54. A. Stafiej, K. Pyrzynska, Adsorption of heavy metal ions with carbon nanotubes. Sep. Purif. Technol. 58(1), 49–52 (2007)

    Article  Google Scholar 

  55. S.A. Kosa, G. Al-Zhrani, M.A. Salam, Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline. Chem. Eng. J. 181, 159–168 (2012)

    Article  Google Scholar 

  56. G. Zhao, J. Li, X. Ren, C. Chen, X. Wang, Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ. Sci. Technol. 45(24), 10454–10462 (2011)

    Article  Google Scholar 

  57. W. Zhang, X. Shi, Y. Zhang, W. Gu, B. Li, Y. Xian, Synthesis of water-soluble magnetic graphene nanocomposites for recyclable removal of heavy metal ions. J. Mater. Chem. A. 1(5), 1745–1753 (2013)

    Article  Google Scholar 

  58. V. Chandra, J. Park, Y. Chun, J.W. Lee, I.-C. Hwang, K.S. Kim, Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4(7), 3979–3986 (2010)

    Article  Google Scholar 

  59. S.-T. Yang, Y. Chang, H. Wang, G. Liu, S. Chen, Y. Wang et al., Folding/aggregation of graphene oxide and its application in Cu 2 + removal. J. Colloid Interface Sci. 351(1), 122–127 (2010)

    Article  Google Scholar 

  60. F. Fu, D.D. Dionysiou, H. Liu, The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J. Hazard. Mater. 267, 194–205 (2014)

    Article  Google Scholar 

  61. J.E. Van Benschoten, B.E. Reed, M.R. Matsumoto, P. McGarvey, Metal removal by soil washing for an iron oxide coated sandy soil. Water Environ. Res. 66(2), 168–174 (1994)

    Article  Google Scholar 

  62. F. Zhang, Q. Jin, S.-W. Chan, Ceria nanoparticles: size, size distribution, and shape. J. Appl. Phys. 95(8), 4319–4326 (2004)

    Article  Google Scholar 

  63. A. Agrawal, K. Sahu, Kinetic and isotherm studies of cadmium adsorption on manganese nodule residue. J. Hazard. Mater. 137(2), 915–924 (2006)

    Article  Google Scholar 

  64. J.A. Coston, C.C. Fuller, J.A. Davis, Pb2+ and Zn2+ adsorption by a natural aluminum-and iron-bearing surface coating on an aquifer sand. Geochim. Cosmochim. Acta 59(17), 3535–3547 (1995)

    Article  Google Scholar 

  65. A. Henglein, Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 89(8), 1861–1873 (1989)

    Article  Google Scholar 

  66. M.A. El-Sayed, Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 34(4), 257–264 (2001)

    Article  Google Scholar 

  67. S.M. Ponder, J.G. Darab, T.E. Mallouk, Remediation of Cr (VI) and Pb (II) aqueous solutions using supported, nanoscale zero-valent iron. Environ. Sci. Technol. 34(12), 2564–2569 (2000)

    Article  Google Scholar 

  68. H.K. Boparai, M. Joseph, D.M. O’Carroll, Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J. Hazard. Mater. 186(1), 458–465 (2011)

    Article  Google Scholar 

  69. X. Zhang, S. Lin, Z. Chen, M. Megharaj, R. Naidu, Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution: reactivity, characterization and mechanism. Water Res. 45(11), 3481–3488 (2011)

    Article  Google Scholar 

  70. S.A. Kim, S. Kamala-Kannan, K.-J. Lee, Y.-J. Park, P.J. Shea, W.-H. Lee et al., Removal of Pb (II) from aqueous solution by a zeolite–nanoscale zero-valent iron composite. Chem. Eng. J. 217, 54–60 (2013)

    Article  Google Scholar 

  71. Y. Su, A.S. Adeleye, Y. Huang, X. Sun, C. Dai, X. Zhou et al., Simultaneous removal of cadmium and nitrate in aqueous media by nanoscale zerovalent iron (nZVI) and Au doped nZVI particles. Water Res. 63, 102–111 (2014)

    Article  Google Scholar 

  72. P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao et al., Use of iron oxide nanomaterials in wastewater treatment: a review. Sci. Total Environ. 424, 1–10 (2012)

    Article  Google Scholar 

  73. N.N. Nassar, Rapid removal and recovery of Pb (II) from wastewater by magnetic nanoadsorbents. J. Hazard. Mater. 184(1), 538–546 (2010)

    Article  Google Scholar 

  74. Z. Khayat Sarkar, F. Khayat Sarkar, Selective removal of lead (II) ion from wastewater using superparamagnetic monodispersed iron oxide (Fe3O4) nanoparticles as a effective adsorbent. Int. J. Nanosci. Nanotechnol. 9(2), 109–114 (2013)

    Google Scholar 

  75. L. Wang, J. Li, Q. Jiang, L. Zhao, Water-soluble Fe3 O4 nanoparticles with high solubility for removal of heavy-metal ions from waste water. Dalton Trans. 41(15), 4544–4551 (2012)

    Article  Google Scholar 

  76. X. Xin, Q. Wei, J. Yang, L. Yan, R. Feng, G. Chen et al., Highly efficient removal of heavy metal ions by amine-functionalized mesoporous Fe3O4 nanoparticles. Chem. Eng. J. 184, 132–140 (2012)

    Article  Google Scholar 

  77. J.-F. Liu, Zhao Z-s, Jiang G-b, Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ. Sci. Technol. 42(18), 6949–6954 (2008)

    Article  Google Scholar 

  78. Y. Bagbi, A. Sarswat, D. Mohan, A. Pandey, P.R. Solanki, Lead (Pb2+) adsorption by monodispersed magnetite nanoparticles: Surface analysis and effects of solution chemistry. J. Environ. Chem. Eng. 4(4), 4237–4247 (2016)

    Article  Google Scholar 

  79. P.R. Grossl, D.L. Sparks, C.C. Ainsworth, Rapid kinetics of Cu (II) adsorption/desorption on goethite. Environ. Sci. Technol. 28(8), 1422–1429 (1994)

    Article  Google Scholar 

  80. Y.-H. Chen, F.-A. Li, Kinetic study on removal of copper (II) using goethite and hematite nano-photocatalysts. J. Colloid Interface Sci. 347(2), 277–281 (2010)

    Article  Google Scholar 

  81. J. Hu, G. Chen, I.M. Lo, Removal and recovery of Cr (VI) from wastewater by maghemite nanoparticles. Water Res. 39(18), 4528–4536 (2005)

    Article  Google Scholar 

  82. J. Hu, G. Chen, I.M. Lo, Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: performance and mechanisms. J. Environ. Eng. 132(7), 709–715 (2006)

    Article  Google Scholar 

  83. M.-S. Kim, K.-M. Hong, J.G. Chung, Removal of Cu (II) from aqueous solutions by adsorption process with anatase-type titanium dioxide. Water Res. 37(14), 3524–3529 (2003)

    Article  Google Scholar 

  84. M.-S. Kim, J.G. Chung, A study on the adsorption characteristics of orthophosphates on rutile-type titanium dioxide in aqueous solutions. J. Colloid Int. Sci. 233(1), 31–37 (2001)

    Article  Google Scholar 

  85. P. Liang, T. Shi, J. Li, Nanometer-size titanium dioxide separation/preconcentration and FAAS determination of trace Zn and Cd in water sample. Int. J. Environ. Anal. Chem. 84(4), 315–321 (2004)

    Article  Google Scholar 

  86. L. Skubal, N. Meshkov, T. Rajh, M. Thurnauer, Cadmium removal from water using thiolactic acid-modified titanium dioxide nanoparticles. J. Photochem. Photobiol., A 148(1), 393–397 (2002)

    Article  Google Scholar 

  87. S. Carrettin, P. Concepción, A. Corma, J.M. Lopez Nieto, V.F. Puntes, Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude. Angew. Chem. Int. Ed. 43(19), 2538–2540 (2004)

    Article  Google Scholar 

  88. S. Tsunekawa, T. Fukuda, A. Kasuya, Blue shift in ultraviolet absorption spectra of monodisperse CeO2 − x nanoparticles. J. Appl. Phys. 87(3), 1318–1321 (2000)

    Article  Google Scholar 

  89. Z. Wang, S. Saxena, V. Pischedda, H. Liermann, C. Zha, In situ x-ray diffraction study of the pressure-induced phase transformation in nanocrystalline CeO2. Phys. Rev. B. 64(1), 012102 (2001)

    Article  Google Scholar 

  90. A. Corma, P. Atienzar, H. Garcia, J.-Y. Chane-Ching, Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nat. Mater. 3(6), 394–397 (2004)

    Article  Google Scholar 

  91. C.-Y. Cao, Z.-M. Cui, C.-Q. Chen, W.-G. Song, W. Cai, Ceria hollow nanospheres produced by a template-free microwave-assisted hydrothermal method for heavy metal ion removal and catalysis. J. Phys. Chem. C. 114(21), 9865–9870 (2010)

    Article  Google Scholar 

  92. S. Recillas, J. Colón, E. Casals, E. González, V. Puntes, A. Sánchez et al., Chromium VI adsorption on cerium oxide nanoparticles and morphology changes during the process. J. Hazard. Mater. 184(1), 425–431 (2010)

    Article  Google Scholar 

  93. Z.-C. Di, J. Ding, X.-J. Peng, Y.-H. Li, Z.-K. Luan, J. Liang, Chromium adsorption by aligned carbon nanotubes supported ceria nanoparticles. Chemosphere 62(5), 861–865 (2006)

    Article  Google Scholar 

  94. M.J. Haron, F. Ab Rahim, A.H. Abdullah, M.Z. Hussein, A. Kassim, Sorption removal of arsenic by cerium-exchanged zeolite P. Mater. Sci. Eng., B 149(2), 204–208 (2008)

    Article  Google Scholar 

  95. C. Gao, W. Zhang, H. Li, L. Lang, Z. Xu, Controllable fabrication of mesoporous MgO with various morphologies and their absorption performance for toxic pollutants in water. Cryst. Growth Des. 8(10), 3785–3790 (2008)

    Article  Google Scholar 

  96. R. Koivula, J. Pakarinen, M. Sivenius, K. Sirola, R. Harjula, E. Paatero, Use of hydrometallurgical wastewater as a precursor for the synthesis of cryptomelane-type manganese dioxide ion exchange material. Sep. Purif. Technol. 70(1), 53–57 (2009)

    Article  Google Scholar 

  97. J. Pakarinen, R. Koivula, M. Laatikainen, K. Laatikainen, E. Paatero, R. Harjula, Nanoporous manganese oxides as environmental protective materials—Effect of Ca and Mg on metals sorption. J. Hazard. Mater. 180(1), 234–240 (2010)

    Article  Google Scholar 

  98. J. Li, Y. Shi, Y. Cai, S. Mou, G. Jiang, Adsorption of di-ethyl-phthalate from aqueous solutions with surfactant-coated nano/microsized alumina. Chem. Eng. J. 140(1), 214–220 (2008)

    Google Scholar 

  99. M. Hiraide, J. Iwasawa, S. Hiramatsu, H. Kawaguchi, Use of surfactant aggregates formed on alumina for the preparation of chelating sorbents. Anal. Sci. 11(4), 611–615 (1995)

    Article  Google Scholar 

  100. G. Chang, Z. Jiang, T. Peng, B. Hu, Preparation of high-specific-surface-area nanometer-sized alumina by sol-gel method and study on adsorption behaviors of transition metal ions on the alumina powder with ICP-AES. Acta Chim. Sin. Chin. Ed. 61(1), 100–103 (2003)

    Google Scholar 

  101. S. Dadfarnia, A.H. Shabani, H.D. Shirie, Determination of lead in different samples by atomic absorption spectrometry after preconcentration with dithizone immobilized on surfactant-coated alumina. Bull. Korean Chem. Soc. 23(4), 545–548 (2002)

    Article  Google Scholar 

  102. M. Fan, T. Boonfueng, Y. Xu, L. Axe, T.A. Tyson, Modeling Pb sorption to microporous amorphous oxides as discrete particles and coatings. J. Colloid Interface Sci. 281(1), 39–48 (2005)

    Article  Google Scholar 

  103. X. Pu, Z. Jiang, B. Hu, H. Wang, γ-MPTMS modified nanometer-sized alumina micro-column separation and preconcentration of trace amounts of Hg, Cu, Au and Pd in biological, environmental and geological samples and their determination by inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 19(8), 984–989 (2004)

    Article  Google Scholar 

  104. A. Afkhami, M. Saber-Tehrani, H. Bagheri, Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2, 4-dinitrophenylhydrazine. J. Hazard. Mater. 181(1), 836–844 (2010)

    Article  Google Scholar 

  105. M.-R. Huang, S.-J. Huang, X.-G. Li, Facile synthesis of polysulfoaminoanthraquinone nanosorbents for rapid removal and ultrasensitive fluorescent detection of heavy metal ions. J. Phys. Chem. C. 115(13), 5301–5315 (2011)

    Article  Google Scholar 

  106. X. Zhao, L. Lv, B. Pan, W. Zhang, S. Zhang, Q. Zhang, Polymer-supported nanocomposites for environmental application: a review. Chem. Eng. J. 170(2), 381–394 (2011)

    Article  Google Scholar 

  107. D. Chen, T. Awut, B. Liu, Y. Ma, T. Wang, I. Nurulla, Functionalized magnetic Fe3O4 nanoparticles for removal of heavy metal ions from aqueous solutions. e-Polymers (2016)

    Google Scholar 

  108. S.-H. Huang, D.-H. Chen, Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J. Hazard. Mater. 163(1), 174–179 (2009)

    Article  Google Scholar 

  109. G.-B. Cai, G.-X. Zhao, X.-K. Wang, S.-H. Yu, Synthesis of polyacrylic acid stabilized amorphous calcium carbonate nanoparticles and their application for removal of toxic heavy metal ions in water. J. Phys. Chem. C. 114(30), 12948–12954 (2010)

    Article  Google Scholar 

  110. S. Pavlidou, C.D. Papaspyrides, A review on polymer–layered silicate nanocomposites. Prog. Polym. Sci. 33(12), 1119–1198 (2008). doi:http://dx.doi.org/10.1016/j.progpolymsci.2008.07.008

  111. J. Liu, Y. Ma, T. Xu, G. Shao, Preparation of zwitterionic hybrid polymer and its application for the removal of heavy metal ions from water. J. Hazard. Mater. 178(1–3), 1021–1029 (2010). doi:http://dx.doi.org/10.1016/j.jhazmat.2010.02.041

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratima R. Solanki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Bagbi, Y., Pandey, A., Solanki, P.R. (2018). Role of Nanostructured Materials Toward Remediation of Heavy Metals/Metalloids. In: Khan, Z. (eds) Nanomaterials and Their Applications. Advanced Structured Materials, vol 84. Springer, Singapore. https://doi.org/10.1007/978-981-10-6214-8_3

Download citation

Publish with us

Policies and ethics