Skip to main content

Nanodiamonds: Synthesis and Applications

  • Chapter
  • First Online:
Nanomaterials and Their Applications

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 84))

Abstract

The present chapter is devoted to the synthesis and applications of nanodiamond. Nanodiamond or nanocrystalline diamond is actually an allotrope of carbon which has nanosized carbon crystallites having well-known diamond structure. Although it is present in nature since long, the realization of its artificial production occurred in the 1960s by the Russian scientists. Due to the policy of secret research, it was in dark until 1980s, when the first formal report of its synthesis was published. Since then, it has been remained in the focus of scientists and researchers worldwide. Several techniques for the synthesis of nanodiamond have been developed. This chapter presents all the major techniques used for the synthesis of nanodiamond particles as well as thin films. Due to its excellent mechanical and optical properties, high surface area, non-toxicity and tenability of its surface structure, nanodiamond has been widely used in various applications. This chapter reviews some interesting applications of nanodiamond, especially, the recent ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.S. Lewis, T. Ming, J.F. Wacker, and E. Steel. Interstellar diamonds in meteorites. In Lunar and Planetary Science Conference, vol. 18. 1987

    Google Scholar 

  2. Roy S. Lewis, Edward Anders, Bruce T. Draine, Properties, detectability and origin of interstellar diamonds in meteorites. Nature 339(6220), 117–121 (1989)

    Article  Google Scholar 

  3. Sachiko Amari, Roy S. Lewis, Edward Anders, Interstellar grains in meteorites: I. Isolation of SiC, graphite and diamond; size distributions of SiC and graphite. Geochim. Cosmochim. Acta 58(1), 459–470 (1994)

    Article  Google Scholar 

  4. C.W. Bauschlicher Jr., Y. Liu, A. Ricca, A.L. Mattioda, L.J. Allamandola, Electronic and vibrational spectroscopy of diamondoids and the interstellar infrared bands between 3.35 and 3.55 μm. Astrophys. J 671(1), 458 (2007)

    Article  Google Scholar 

  5. Vadym N. Mochalin, Olga Shenderova, Dean Ho, Yury Gogotsi, The properties and applications of nanodiamonds. Nat. Nanotechnol. 7(1), 11–23 (2012)

    Article  Google Scholar 

  6. V.V. Danilenko, On the history of the discovery of nanodiamond synthesis. Phys. Solid State 46(4), 595–599 (2004)

    Article  Google Scholar 

  7. N.R. Greiner, D.S. Phillips, J.D. Johnson, F. Volk, Diamonds in detonation soot. Nature 333(6172), 440–442 (1988)

    Article  Google Scholar 

  8. Guo-Wei Yang, Jin-Bin Wang, Qui-Xiang Liu, Preparation of nano-crystalline diamonds using pulsed laser induced reactive quenching. J. Phys. Condens. Matter 10(35), 7923 (1998)

    Article  Google Scholar 

  9. J.P. Boudou et al., High yield fabrication of fluorescent nanodiamonds. Nanotechnology 20, 235602 (2009)

    Article  Google Scholar 

  10. Y.G. Gogotsi et al., Structure of carbon produced by hydrothermal treatment of β-SiC powder. J. Mater. Chem. 6, 595–604 (1996)

    Article  Google Scholar 

  11. M. Frenklach et al., Induced nucleation of diamond powder. Appl. Phys. Lett. 59, 546–548 (1991)

    Article  Google Scholar 

  12. T.L. Daulton, M.A. Kirk, R.S. Lewis, L.E. Rehn, Production of nanodiamonds by high-energy ion irradiation of graphite at room temperature. Nucl. Instrum. Meth. B 175, 12–20 (2001)

    Article  Google Scholar 

  13. S. Welz, Y. Gogotsi, M.J. McNallan, Nucleation, growth, and graphitization of diamond nanocrystals during chlorination of carbides. J. Appl. Phys. 93, 4207–4214 (2003)

    Article  Google Scholar 

  14. É. Galimov et al., Experimental corroboration of the synthesis of diamond in the cavitation process. Dokl. Phys. 49, 150–153 (2004)

    Article  Google Scholar 

  15. O.A. Shedorova, D.M. Gruen (eds.), Ultrananocrystalline diamond: synthesis, properties and applications (William Andrew Publishing, Norwich, NY, 2006)

    Google Scholar 

  16. V.P. Adiga et al., Phys Rev B 79, 245403 (2009)

    Article  Google Scholar 

  17. Y.R. Chang et al., Mass production and dynamic imaging of fluorescent nanodiamonds. Nature Nanotech. 3, 284–288 (2008)

    Article  Google Scholar 

  18. V.N. Mochalin, Y. Gogotsi, Wet chemistry route to hydrophobic blue fluorescent nanodiamond. J. Am. Chem. Soc. 131, 4594–4595 (2009)

    Article  Google Scholar 

  19. R.A. Shimkunas et al., Nanodiamond–insulin complexes as pH-dependent protein delivery vehicles. Biomaterials 30, 5720–5728 (2009)

    Article  Google Scholar 

  20. K.V. Purtov, A.I. Petunin, A.E. Burov, A.P. Puzyr, V.S. Bondar, Nanodiamonds as carriers for address delivery of biologically active substances. Nanoscale Res. Lett. 5, 631–636 (2010)

    Article  Google Scholar 

  21. A. Krueger, Diamond nanoparticles: jewels for chemistry and physics. Adv. Mater. 20, 2445–2449 (2008)

    Article  Google Scholar 

  22. W.W. Zheng et al., Organic functionalization of ultradispersed nanodiamond: synthesis and applications. J. Mater. Chem. 19, 8432–8441 (2009)

    Article  Google Scholar 

  23. B.V. Spitsyn et al., Mater. 15, 296–299 (2006)

    Google Scholar 

  24. K.D. Behler et al., Nanodiamond–polymer composite fibers and coatings. ACS Nano 3, 363–369 (2009)

    Article  Google Scholar 

  25. Q. Zhang et al., Fluorescent PLLA–nanodiamond composites for bone tissue engineering. Biomaterials 32, 87–94 (2011)

    Article  Google Scholar 

  26. D.H. Wang, L.S. Tan, H.J. Huang, L.M. Dai, E. Osawa, In-situ nanocomposite synthesis: arylcarbonylation and grafting of primary diamond nanoparticles with a poly(ether–ketone) in polyphosphoric acid. Macromolecules 42, 114–124 (2009)

    Article  Google Scholar 

  27. J.L. Cheng, J.P. He, C.X. Li, Y.L. Yang, Facile approach to functionalize nanodiamond particles with V-shaped polymer brushes. Chem. Mater. 20, 4224–4230 (2008)

    Article  Google Scholar 

  28. V.N. Mochalin et al., Covalent incorporation of aminated nanodiamond into an epoxy polymer network. ACS Nano 5, 7494–7502 (2011)

    Article  Google Scholar 

  29. P.S. DeCarli, J.C. Jamieson, Formation of diamond by explosive shock. Science 133(3467), 1821–1822 (1961)

    Article  Google Scholar 

  30. P.S. DeCarli, Method of making diamond, US Patent, 3238019 (1966)

    Google Scholar 

  31. G.R. Cowan, N.J. Woodbury, B.W. Dunnington, P. Wood, A.H. Holtzman, Process for synthesizing diamond, US Patent 3401019 (1968)

    Google Scholar 

  32. V.V. Danilenko, On the discovery of detonation nanodiamond, in Ultrananocrystalline Diamond, ed. by O.A. Shenderova, D.M. Gruen (Norwich, WilliamAndrew, 2006), pp. 335–344

    Chapter  Google Scholar 

  33. L.F. Trueb, J. Appl. Phys. 39, 4707 (1968). b) G. Burkhard, H. Tamura, Y. Tanabe, A.B. Sawaoka, K. Yamada, Appl. Phys. Lett. 66, 3131 (1995)

    Google Scholar 

  34. M. Vanthiel, F.H. Ree, J. Appl. Phys. 62, 1761 (1987)

    Article  Google Scholar 

  35. V.Y. Dolmatov, Detonation synthesis ultradispersed diamonds: properties and applications. Usp. Khim. 70, 687–708 (2001)

    Article  Google Scholar 

  36. V.V. Danilenko, Synthesis and Sintering of Diamond by Explosion (Energoatomizdat, Moscow, 2003)

    Google Scholar 

  37. V.Y. Dolmatov, M.V. Veretennikova, V.A. Marchukov, V.G. Sushchev, Currently available methods of industrial nanodiamond synthesis. Phys. solid state 46(4), 611–615 (2004)

    Article  Google Scholar 

  38. J.B. Donnet, C. Lemoigne, T.K. Wang, C.-M. Peng, M. Samirant, A. Eckhardt, Bull. Soc. Chim. Fr. 134, 875 (1997)

    Google Scholar 

  39. G.A. Adadurov, A.V. Baluev, O.N. Breusov, V.N. Drobyshev, A.I. Rogacheva, A.M. Sapegin, V.F. Tatsii, Some properties of diamonds produced by an explosive method. Izv. Akad. Nauk SSSR Ser. Neorg. Mater. 13(4), 649–653 (1977)

    Google Scholar 

  40. V.F. Tatsii, A.V. Bochko, G.S. Oleinik, Structure and properties of Dalan detonation diamonds. Combust. Explos. Shock Waves 45(1), 95–103 (2009)

    Article  Google Scholar 

  41. V.V. Danilenko, in Synthesis, Properties and Applications of Ultrananocrystalline Diamond (Proceedings of NATO Advanced Research Workshop), ed. by D. Gruen, O. Shenderova, A. Vul (Springer, Heidelberg, 2005), pp. 181–198

    Google Scholar 

  42. P. Badziag, W.S. Verwoerd, W.P. Ellis, N.R. Greiner, Nanometre-sized diamonds are more stable than graphite. Nature 343, 244–245 (1990)

    Article  Google Scholar 

  43. A.S. Barnard, S.P. Russo, I.K. Snook, Structural relaxation and relative stability of nanodiamond morphologies. Diamond Relat. Mater. 12, 1867–1872 (2003)

    Article  Google Scholar 

  44. A.S. Barnard, M. Sternberg, Crystallinity and surface electrostatics of diamond nanocrystals. J. Mater. Chem. 17, 4811–4819 (2007)

    Article  Google Scholar 

  45. J.Y. Raty, G. Galli, Ultradispersity of diamond at the nanoscale. Nature Mater. 2, 792–795 (2003)

    Article  Google Scholar 

  46. L. Lai, A.S. Barnard, Modeling the thermostability of surface functionalisation by oxygen, hydroxyl, and water on nanodiamonds. Nanoscale 3, 2566–2575 (2011)

    Article  Google Scholar 

  47. L. Lai, A.S. Barnard, Stability of nanodiamond surfaces exposed to N, NH, and NH2. J. Phys. Chem. C 115, 6218–6228 (2011)

    Article  Google Scholar 

  48. A. Aleksenskiy, M. Baidakova, V. Osipov, A. Vul, Nanodiamonds, in Applications Biology and Nanoscale Medicine, ed. by D. Ho (Springer, Berlin, 2010), pp. 55–79

    Google Scholar 

  49. I.I. Vlasov et al., Nitrogen and luminescent nitrogen-vacancy defects in detonation nanodiamond. Small 6, 687–694 (2010)

    Article  Google Scholar 

  50. O.A. Shenderova, D.M. Gruen, Ultrananocrystalline Diamond: Synthesis, Properties, and Applications (William Andrew, New York, 2006)

    Google Scholar 

  51. Vincent Pichot, Benedikt Risse, Fabien Schnell, Julien Mory, Denis Spitzer, Understanding ultrafine nanodiamond formation using nanostructured explosives. Sci. Rep. 3, 2159 (2013)

    Article  Google Scholar 

  52. Stepan S. Batsanov, Alexander N. Osavchuk, Stepan P. Naumov, Alexander E. Efimov, Budhika G. Mendis, David C. Apperley, Andrei S. Batsanov, Synthesis and properties of hydrogen-free detonation diamond. Propellants Explos. Pyrotech. 40(1), 39–45 (2015)

    Article  Google Scholar 

  53. Z.Y. Juang, J.F. Lai, C.H. Weng, J.H. Lee, H.J. Lai, T.S. Lai, C.H. Tsai, On the kinetics of carbon nanotube growth by thermal CVD method. Diamond and related materials 13(11), 2140–2146 (2004)

    Article  Google Scholar 

  54. Xianbao Wang, Haijun You, Fangming Liu, Mingjian Li, Li Wan, Shaoqing Li, Qin Li et al., Large-scale synthesis of few-layered graphene using CVD. Chem. Vap. Deposition 15(1–3), 53–56 (2009)

    Article  Google Scholar 

  55. James E. Butler, Anirudha V. Sumant, The CVD of nanodiamond materials. Chem. Vap. Deposition 14(7–8), 145–160 (2008)

    Article  Google Scholar 

  56. B.V. Spitsyn, B.V. Deryaguin, USSR Inventor’s Certificate No. 339134, Application No. 964957/716358 (July 10, 1956)

    Google Scholar 

  57. S. Matsumoto, Y. Sato, M. Kamo et al., Jpn. J. Appl. Phys. 21(4A), L183 (1982)

    Article  Google Scholar 

  58. M. Kamo, Y. Sato, S. Matsumoto et al., J. Cryst. Growth 62(3), 642 (1983)

    Article  Google Scholar 

  59. S. Matsumoto, J. Mater. Sci. Lett. 4(5), 600 (1985)

    Article  Google Scholar 

  60. M. Frenklach, R. Kematick, D. Huang, W. Howard, K.E. Spear, A.W. Phelps, R. Koba, Homogeneous nucleation of diamond powder in the gas phase. J. Appl. Phys. 66, 395–399 (1989)

    Article  Google Scholar 

  61. M. Frenklach, W. Howard, D. Huang, J. Yuan, K.E. Spear, R. Koba, Induced nucleation of diamond powder. Appl. Phys. Lett. 59(5), 546–548 (1991)

    Article  Google Scholar 

  62. P.R. Buerki, S. Leutwyler, Homogeneous nucleation of diamond powder by CO2 laser-driven reactions. J. Appl. Phys. 69, 3739–3745 (1991)

    Article  Google Scholar 

  63. Jin-Woo Park, Kun-Su Kim, Nong-Moon Hwang, Gas phase generation of diamond nanoparticles in the hot filament chemical vapor deposition reactor. Carbon 106, 289–294 (2016)

    Article  Google Scholar 

  64. O.A. Shenderova, A.C.H. Suzanne, Nanodiamonds. In Springer Handbook of Nanomaterials, (Springer, Berlin, 2013), pp. 263–300

    Google Scholar 

  65. Jean-Paul Boudou, Julia Tisler, Rolf Reuter, Alain Thorel, Patrick A. Curmi, Fedor Jelezko, Joerg Wrachtrup, Fluorescent nanodiamonds derived from HPHT with a size of less than 10 nm. Diam. Relat. Mater. 37, 80–86 (2013)

    Article  Google Scholar 

  66. P. Curmi, J.-P. Boudou, A. Thorel, F. Jelezko, M. Sennour. Method for manufacturing cubic diamond nanocrystals. U.S. Patent 8,932,553, issued January 13, 2015

    Google Scholar 

  67. G.W. Yang, Laser ablation in liquids: applications in the synthesis of nanocrystals. Progr. Mater. Sci. 52, 648–698 (2007)

    Article  Google Scholar 

  68. C.X. Wang, P. Liu, H. Cui, G.W. Yang, Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid. Appl. Phys. Lett. 87(20), 201913 (2005)

    Article  Google Scholar 

  69. L. Yang, P.W. May, L. Yin, J.A. Smith, K.N. Rosser, Growth of diamond nanocrystals by pulsed laser ablation of graphite in liquid. Diam. Relat. Mater. 16(4), 725–729 (2007)

    Article  Google Scholar 

  70. N. Tarasenka, A. Stupak, N. Tarasenko, D. Mariotti, S. Chakrabarti. Structure and optical properties of carbon nanoparticles generated by laser treatment of graphite in liquid. ChemPhysChem (2016)

    Google Scholar 

  71. F. Gorrini, M. Cazzanelli, N. Bazzanella, R. Edla, M. Gemmi, V. Cappello, J. David, C. Dorigoni, A. Bifone, A. Miotello. On the thermodynamic path enabling a room-temperature, laser-assisted graphite to nanodiamond transformation. Sci. Rep. 6 (2016)

    Google Scholar 

  72. David Amans, Mouhamed Diouf, Julien Lam, Gilles Ledoux, Christophe Dujardin, Origin of the nano-carbon allotropes in pulsed laser ablation in liquids synthesis. J. Colloid Interface Sci. 489, 114–125 (2017)

    Article  Google Scholar 

  73. F. Banhart, P.M. Ajayan, Carbon onion as nanoscopic pressure cell for diamond formation. Nature 382, 433–437 (1996)

    Article  Google Scholar 

  74. P. Wesolowski, Y. Lyutovich, F. Banhart, H.D. Carstanjen, H. Kronmüller, Formation of diamond in carbon onions under MeV ion irradiation. Appl. Phys. Lett. 71, 1948–1951 (1997)

    Article  Google Scholar 

  75. T.L. Daulton, M.A. Kirk, R.S. Lewis, L.E. Rehn, Production of nanodiamonds by high-energy ion irradiation of graphite at room temperature. Nucl. Instrum. Methods Phys. Res. B 175, 12–18 (2001)

    Article  Google Scholar 

  76. T. Meguro, M. Hida, M. Suzuki, Y. Koguchi, H. Takai, Y. Yamamoto, K. Maeda, Y. Aoyagi, Creation of nanodiamonds by single impacts of highly charged ions upon graphite. Appl. Phys. Lett. 79, 3866–3870 (2001)

    Article  Google Scholar 

  77. C.E. Chapter, Brennen: Cavitation and Bubble Dynamics (Oxford Univ, Oxford, 1995)

    Google Scholar 

  78. Yury Gogotsi, Sascha Welz, Daniel A. Ersoy, Michael J. McNallan, Conversion of silicon carbide to crystalline diamond-structured carbon at ambient pressure. Nature 411(6835), 283–287 (2001)

    Article  Google Scholar 

  79. K.J. Grannen, R.P.H. Chang, Diamond growth on carbide surfaces using a selective etching technique. J. Mater. Res. 9, 2154–2163 (1994)

    Article  Google Scholar 

  80. J.M.J. Lannon, J.S. Gold, C.D. Stinespring, Hydrogen ion interactions with silicon carbide and the nucleation of diamond thin films. J. Appl. Phys. 77, 3823–3830 (1995)

    Article  Google Scholar 

  81. V. Heera, W. Skorupa, B. Pecz, L. Dobos, Ion beam synthesis of graphite and diamond in silicon carbide. Appl. Phys. Lett. 76, 2847–2849 (2000)

    Article  Google Scholar 

  82. N. Nunn, T. Marco, G. McGuire, O. Shenderova, Nanodiamond: a high impact nanomaterial. Curr. Opin. Solid State Mater. Sci. 21(1), 1–9 (2016)

    Article  Google Scholar 

  83. X. Liu, X. Xu. Ultra-fine polishing of glass-ceramics by disaggregated and fractionated detonation nanodiamond. Ceramics International (2017)

    Google Scholar 

  84. K.B. Holt, Diamond at the nanoscale: applications of diamond nanoparticles from cellular biomarkers to quantum computing. Phil. Trans. Roy. Soc. A 365, 2845–2861 (2007)

    Article  Google Scholar 

  85. Khosro A. Shirvani, Mohsen Mosleh, Sonya T. Smith, Nanopolishing by colloidal nanodiamond in elastohydrodynamic lubrication. J. Nanopart. Res. 18(8), 248 (2016)

    Article  Google Scholar 

  86. A. Stravato, R. Knight, V. Mochalin, S.C. Picardi, HVOF-sprayed nylon-11 + nanodiamond composite coatings: Production and characterization. J. Therm. Spray Technol. 17, 812–817 (2008)

    Article  Google Scholar 

  87. O. Shenderova et al., Detonation nanodiamond and onion-like carbon: applications in composites. Phys. Status Solidi A 205, 2245–2251 (2008)

    Article  Google Scholar 

  88. J.Y. Lee, D.P. Lim, D.S. Lim, Tribological behavior of PTFE nanocomposite films reinforced with carbon nanoparticles. Composites B 38, 810–816 (2007)

    Article  Google Scholar 

  89. I. Neitzel, V. Mochalin, I. Knoke, G.R. Palmese, Y. Gogotsi, Mechanical properties of epoxy composites with high contents of nanodiamond. Compos. Sci. Technol. 71, 710–716 (2011)

    Article  Google Scholar 

  90. U. Maitra, K.E. Prasad, U. Ramamurty, C.N.R. Rao, Mechanical properties of nanodiamond-reinforced polymer-matrix composites. Solid State Commun. 149, 1693–1697 (2009)

    Article  Google Scholar 

  91. Q. Zhang, K. Naito, Y. Tanaka, Y. Kagawa, Grafting polyimides from nanodiamonds. Macromolecules 41, 536–538 (2008)

    Article  Google Scholar 

  92. O. Shenderova et al., Nanodiamond and onion-like carbon polymer nanocomposites. Diamond Relat. Mater. 16, 1213–1217 (2007)

    Article  Google Scholar 

  93. Fan Zhang, Qingxin Song, Xuan Huang, Fengning Li, Kun Wang, Yixing Tang, Canglong Hou, Hongxing Shen, A novel high mechanical property PLGA composite matrix loaded with nanodiamond-phospholipid compound for bone tissue engineering. ACS Appl. Mater. Interfaces. 8(2), 1087–1097 (2016)

    Article  Google Scholar 

  94. Y. Zhang, K.Y. Rhee, S.-J. Park, Nanodiamond nanocluster-decorated graphene oxide/epoxy nanocomposites with enhanced mechanical behavior and thermal stability. Compos. Part B Eng. 114, 111–120 (2017)

    Article  Google Scholar 

  95. E.-Y.Choi, K. Kim, C.-K. Kim, E. Kang. Reinforcement of nylon 6, 6/nylon 6, 6 grafted nanodiamond composites by in situ reactive extrusion. Sci. Rep. 6 (2016)

    Google Scholar 

  96. Ayesha Kausar, Thermal and rheological properties of waterborne polyurethane/nanodiamond composite. Nanosci. Nanotechnol. 6(1), 6–10 (2016)

    Google Scholar 

  97. V. Borjanović, L. Bistričić, I. Pucić, L. Mikac, R. Slunjski, M. Jakšić, G. McGuire, A.T. Stanković, O. Shenderova, Proton-radiation resistance of poly (ethylene terephthalate)–nanodiamond–graphene nanoplatelet nanocomposites. J Mater. Sci. 51(2), 1000–1016 (2016)

    Article  Google Scholar 

  98. A. Nieto, J. Kim, O. Penkov, D.-E. Kim, J.M. Schoenung, Elevated temperature wear behavior of thermally sprayed WC-Co/nanodiamond composite coatings. Surf. Coat. Technol. 315, 283–293 (2017)

    Article  Google Scholar 

  99. S. Yin, Y. Xie, J. Cizek, E. Ekoi, T. Hussain, D. Dowling, R. Lupoi, Advanced diamond-reinforced metal matrix composites via cold spray: properties and deposition mechanism. Compos. Part B Eng. 113(15), 44–54 (2017)

    Article  Google Scholar 

  100. S. Murugesan, O.R. Monteiro, V.N. Khabashesku, Extending the Lifetime of Oil and Gas Equipment with Corrosion and Erosion-Resistant Ni-B-Nanodiamond Metal-Matrix-Nanocomposite Coatings. Offshore Technology Conference. (2016). doi:10.4043/26934-MS

  101. H. Huang, E. Pierstorff, E. Osawa, D. Ho, Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett. 7, 3305–3314 (2007)

    Article  Google Scholar 

  102. Chow et al., Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci. Transl. Med. 3, 73ra21 (2011)

    Google Scholar 

  103. Xianfeng Chen, Wenjun Zhang, Diamond nanostructures for drug delivery, bioimaging, and biosensing.” Chemical Society Reviews (2017), R. Lam, D. Ho., Nanodiamonds as vehicles for systemic and localized drug delivery. Expert Opin. Drug Deliv. 6(9), 883–895 (2009)

    Article  Google Scholar 

  104. X. Chen, W. Zhang, Diamond nanostructures for drug delivery, bioimaging, and biosensing. Chem. Soc. Rev. 46, 734–760 (2017)

    Article  Google Scholar 

  105. M. Chen, E.D. Pierstorff, R. Lam, S.-Y. Li, H. Huang, E. Osawa, D. Ho, ACS Nano 3, 2016–2022 (2009)

    Article  Google Scholar 

  106. Z. Zhang, B. Niu, J. Chen, X. He, X. Bao, J. Zhu, H. Yu, Y. Li, Biomaterials 35, 4565–4572 (2014)

    Article  Google Scholar 

  107. H. Wang, D.-K. Lee, K.-Y. Chen, J.-Y. Chen, K. Zhang, A. Silva, C.-M. Ho, D. Ho, ACS Nano 9, 3332–3344 (2015)

    Article  Google Scholar 

  108. M.I. Setyawati, V.N. Mochalin, D.T. Leong, ACS Nano 10, 1170–1181 (2016)

    Article  Google Scholar 

  109. Y. Wong, K. Markham, Z.P. Xu, M. Chen, G.Q. Lu, P.F. Bartlett, H.M. Cooper, Biomaterials 31, 8770–8779 (2010)

    Article  Google Scholar 

  110. M. Ladewig, ZPXu Niebert, P.P. Gray, G.Q.M. Lu, Biomaterials 31, 1821–1829 (2010)

    Article  Google Scholar 

  111. L. Feng, S. Zhang, Z. Liu, Nanoscale 3, 1252–1257 (2011)

    Article  Google Scholar 

  112. X. Wang, K. Liu, G. Yang, L. Cheng, L. He, Y. Liu, Y. Li, L. Guo, Z. Liu, Nanoscale 6, 9198–9205 (2014)

    Article  Google Scholar 

  113. X.-Q. Zhang, M. Chen, R. Lam, X. Xu, E. Osawa, D. Ho, ACS Nano 3, 2609–2616 (2009)

    Article  Google Scholar 

  114. M. Chen, X.-Q. Zhang, H. Man, R. Lam, E.K. Chow, D. Ho, Nanodiamond vectors functionalized with polyethylenimine for siRNA delivery. The Journal of Physical Chemistry Letters 1(21), 3167–3171 (2010)

    Article  Google Scholar 

  115. L. Zhang, W. Zheng, R. Tang, N. Wang, W. Zhang, X. Jiang, Gene regulation with carbon-based siRNA conjugates for cancer therapy. Biomaterials 104, 269–278 (2016)

    Article  Google Scholar 

  116. S. Alwani, R. Kaur, D. Michel, J.M. Chitanda, R.E. Verrall, K. Chithra, I. Badea, Lysine-functionalized nanodiamonds as gene carriers: development of stable colloidal dispersion for in vitro cellular uptake studies and siRNA delivery application. Int. J. Nanomed. 11, 687 (2016)

    Google Scholar 

  117. G. Balasubramanian, A. Lazariev, S.R. Arumugam, D.-W. Duan, Curr. Opin. Chem. Biol. 20, 69–77 (2014)

    Article  Google Scholar 

  118. P.G. Baranov, A.A. Soltamova, D.O. Tolmachev, N.G. Romanov, R.A. Babunts, F.M. Shakhov, S.V. Kidalov, A.Y. Vul, G.V. Mamin, S.B. Orlinskii, N.I. Silkin, Small 7, 1533–1537 (2011)

    Article  Google Scholar 

  119. M.S. Grinolds, M. Warner, K. De Greve, Y. Dovzhenko, L. Thiel, R.L. Walsworth, S. Hong, P. Maletinsky, A. Yacoby, Nat. Nanotechnol. 9, 279–284 (2014)

    Article  Google Scholar 

  120. L.P. McGuinness, Y. Yan, A. Stacey, D.A. Simpson, L.T. Hall, D. Maclaurin, S. Prawer, P. Mulvaney, J. Wrachtrup, F. Caruso, R.E. Scholten, L.C.L. Hollenberg, Nat. Nanotechnol. 6, 358–363 (2011)

    Article  Google Scholar 

  121. F.C. Ziem, N.S. Goetz, A. Zappe, S. Steinert, J. Wrachtrup, Nano Lett. 13, 4093–4098 (2013)

    Article  Google Scholar 

  122. S. Steinert, F. Ziem, L.T. Hall, A. Zappe, M. Schweikert, N. Goetz, A. Aird, G. Balasubramanian, L. Hollenberg, J. Wrachtrup, Nat. Commun. 4, 1607 (2013)

    Article  Google Scholar 

  123. L.T. Hall, G.C.G. Beart, E.A. Thomas, D.A. Simpson, L.P. McGuinness, J.H. Cole, J.H. Manton, R.E. Scholten, F. Jelezko, J. Wrachtrup, S. Petrou, L.C.L. Hollenberg, Sci. Rep. 2, 401 (2012)

    Article  Google Scholar 

  124. G. Kucsko, P.C. Maurer, N.Y. Yao, M. Kubo, H.J. Noh, P.K. Lo, H. Park, M.D. Lukin, Nature 500, 54–58 (2013)

    Article  Google Scholar 

  125. S.J. Yu, M.W. Kang, H.C. Chang, K.M. Chen, Y.C. Yu, J. Am. Chem. Soc. 127, 17604–17605 (2005)

    Article  Google Scholar 

  126. R. Schirhagl, K. Chang, M. Loretz and C.L. Degen, in Ann. Rev. Phys. Chem. ed. by M.A. Johnson, T.J. Martinez, vol. 65 (2014), pp. 83–105

    Google Scholar 

  127. X. Chen, C. Zou, Z. Gong, C. Dong, G. Guo, F. Sun, Light. Sci Appl. 4, e230 (2015)

    Google Scholar 

  128. C.-C. Fu, H.-Y. Lee, K. Chen, T.-S. Lim, H.-Y. Wu, P.-K. Lin, P.-K. Wei, P.-H. Tsao, H.-C. Chang, W. Fann, Proc. Natl. Acad. Sci. U. S. A. 104, 727–732 (2007)

    Article  Google Scholar 

  129. O. Faklaris, D. Garrot, V. Joshi, J.-P. Boudou, T. Sauvage, P.A. Curmi, F. Treussart, J. Eur. Opt. Soc. Rapid 4, 09035 (2009)

    Article  Google Scholar 

  130. C.P. Epperla, N. Mohan, C.-W. Chang, C.-C. Chen, H.-C. Chang, Small 11, 6097–6105 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zishan H. Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Khan, M.B., Khan, Z.H. (2018). Nanodiamonds: Synthesis and Applications. In: Khan, Z. (eds) Nanomaterials and Their Applications. Advanced Structured Materials, vol 84. Springer, Singapore. https://doi.org/10.1007/978-981-10-6214-8_1

Download citation

Publish with us

Policies and ethics