Allison SD (2012) A trait-based approach for modelling microbial litter decomposition. Ecol Lett 15:1058–1070
CAS
PubMed
CrossRef
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410
CAS
PubMed
CrossRef
Google Scholar
Amellal N, Burtin G, Bartoli F, Heulin T (1998) Colonization of wheat roots by an exopolysaccharide-producing Pantoea agglomerans strain and its effect on rhizosphere soil aggregation. Appl Environ Microbiol 64:3740–3747
CAS
PubMed
PubMed Central
Google Scholar
Andreote FD, Jimenez DJ, Chaves D, Dias ACF, Luvizotto DM, Andreote FD, Fasanella CC, Lopez MV, Baena S, Taketani RG, Melo ISD (2012) The microbiome of Brazilian mangrove sediments as revealed by metagenomics. PLoS One 7(6):e38600. https://doi.org/10.1371/journal.pone.0038600.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ankley GT, Daston GP, Degitz SJ, Denslow ND, Hoke RA, Kennedy SW, Miracle AL, Perkins EJ, Snape J, Tillitt DE, Tyler CR, Versteeg D (2006) Toxi-cogenomics in regulatory ecotoxicology. Environ Sci Technol 40:4055–4065
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Bailly J, Tachet LF, Verner MC, Debaud JC, Lemaire M, Louvel MW, Marmeisse R (2007) Soil eukaryotic functional diversity, a metatranscriptomic approach. ISME J 1:632–642
CAS
PubMed
CrossRef
Google Scholar
Banfield DJF, Verberkmoes NC, Hettich RL, Thelen MP (2005) Proteogenomic approaches for the molecular characterization of natural microbial communities. OMICS 9:301–333
CAS
PubMed
CrossRef
Google Scholar
Bastida F, Moreno JL, Nicolas C, Hernandez T, Garcia C (2009) Soil metaproteomics: a review of an emerging environmental science. Significance, methodology and perspectives. Eur J Soil Sci 60:845–885
CAS
CrossRef
Google Scholar
Bastida F, Nicolas C, Moreno JL, Hernandez T, Garcia C (2010) Tracing changes in the microbial community of a hydrocarbon-polluted soil by culture-dependent proteomics. Pedosphere 20:479–485
CAS
CrossRef
Google Scholar
Bastida F, Hernández T, García C (2014) Metaproteomics of soils from semiarid environment: functional and phylogenetic information obtained with different protein extraction methods. J Proteome 101:31–42
CAS
CrossRef
Google Scholar
Benndorf D, Balcke GU, Harms H, Bergen MV (2007) Functional metaproteome analysis of protein extracts from contaminated soil and groundwater. ISME J 1:224–234
CAS
PubMed
CrossRef
Google Scholar
Blazewicz SJ, Barnard RL, Daly RA, Firestone MK (2013) Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J 7(11):2061–2068. https://doi.org/10.1038/ismej.2013.102
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Chen LS, Figueredo A, Pedrosa FO, Hungria M (2000) Genetic characterization of soybean rhizobia in Paraguay. Appl Environ Microbiol 66:5099–5103
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Choi YH, Kim HK, Linthorst HJM, Hollander JG, Lefeber AWM, Erkelens C, Nuzillard JM, Verpoorte R (2006) NMR Metabolomics to revisit the tobacco mosaic virus infection in Nicotiana tabacum leaves. J Nat Prod 69:742–748
CAS
PubMed
CrossRef
Google Scholar
Chourey K, Jansson J, VerBerkmoes N, Shah M, Chavarria KL, Tom LM, Brodie EL, Hettich RL (2010) Direct cellular lysis/protein extraction protocol for soil metaproteomics. Proteome Res 9:6615–6622
CAS
CrossRef
Google Scholar
Chung EJ, Lim HK, Kim JC, Choi GJ, Park EJ, Lee MH, Chung YR, Lee SW (2008) Forest soil metagenome gene cluster involved in antifungal activity expression in Escherichia coli. Appl Environ Microbiol 74:723–730
CAS
PubMed
CrossRef
Google Scholar
Cieśliński H, Białkowskaa A, Tkaczuk K, Długołecka A, Kur J, Turkiewicz M (2009) Identification and molecular modeling of a novel lipase from an Antarctic soil metagenomic library. Pol J Microbiol 58:199–204
PubMed
Google Scholar
Croucher NJ, Thomson NR (2010) Studying bacterial transcriptomes using RNA-seq. Curr Opin Microbiol 13:619–624
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Dam NM, Bouwmeester HJ (2016) Metabolomics in the Rhizosphere: tapping into belowground chemical communication. Trends Plant Sci 21:256–265
PubMed
CrossRef
CAS
Google Scholar
Damon C, Lehembre F, Desfeux CO, Luis P, Ranger J, Tachet LF, Marmeisse R (2012) Metatranscriptomics reveals the diversity of genes expressed by eukaryotes in forest soils. PLoS One 7(1):e28967. https://doi.org/10.1371/journal.pone.0028967
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Delmont TO, Robe P, Cecillon S, Clark IM, Constancias F, Simonet P, Hirsch PR, Vogel TM (2011) Accessing the soil metagenome for studies of microbial diversity. Appl Environ Microbiol 77:1315–1324
CAS
PubMed
CrossRef
Google Scholar
Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, Mering CV, Vorholt JA (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci U S A 106:16428–16433
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Draghi WO, Papa MFD, Barsch A, Albicoro FJ, Lozano MJ, Pühler A, Niehaus K, Lagares A (2017) A metabolomic approach to characterize the acid-tolerance response in Sinorhizobium meliloti. Metabolomics 24:13–71
Google Scholar
Fan TWM, Bird JA, Brodie EL, Lane AN (2009) 13C Isotoper – based metabolomics of microbial groups isolated from two forest soils. Metabolomics 5:108–122
CAS
CrossRef
Google Scholar
Fan B, Carvalhais LC, Becker A, Fedoseyenko D, Wirén NV, Borriss R (2012) Transcriptomic profiling of Bacillus amyloliquefaciens FZB42 in response to maize root exudates. BMC Microbiol. https://doi.org/10.1186/1471-2180-12-116
Fedurco M, Romieu A, Williams S, Lawrence I, Turcatti G (2006) BTA, a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies. Nucleic Acids Res 34(3):e22. https://doi.org/10.1093/nar/qnj023
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Feng YY (2013) Omics breakthroughs for environmental microbiology. Omics Environ Microbiol 40:18–33
Google Scholar
Fierer N, Jackson JA, Vilgalys R, Jackson RB (2005) Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol 71:4117–4120
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Fierer N, Breitbart M, Nulton J, Salamon P, Lozupone C, Jones R, Robeson M, Edwards RA, Felts B, Rayhawk S, Knight R, Rohwer F, Jackson RB (2007) Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl Environ Microbiol 73:7059–7066
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Garbeva P, Veen JAV, Elsas JDV (2004) Microbial diversity in soil: selection microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270
CAS
PubMed
CrossRef
Google Scholar
Gerry Q, Ed D, Stefan D, Peter M, Ingrid H, Richard W, Rhys A, Tom D, Lewis F, Andrea GS, Geertje VK (2016) The metaproteome of “Park Grass” soil – a reference for EU soil science. Copernicus 82:15981–15982
Google Scholar
Ghebremedhin B, Layer F, König W, König B (2008) Genetic classification and distinguishing of Staphylococcus species based on different partial gap, 16 rRNA, hsp60, rpoB, sodA, and tuf gene sequences. J Clin Microbiol 46:1019–1025
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Giagnoni L, Magherini F, Landi L, Taghavi S, Lelie DVD, Puglia M, Bianchi L, Bini L, Nannipieri P, Renella G, Modesti A (2012) Soil solid phases effects on the proteomic analysis of Cupriavidus metallidurans CH34. Biol Fertil Soils 48:425–433
CAS
CrossRef
Google Scholar
Gieger C, Geistlinger L, Altmaier E, Angelis MHD, Kronenberg F, Meitinger T, Mewes HW, Wichmann HE, Weinberger KM, Adamski J, Illig T, Suhre K (2008) Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet 4(11):e1000282. https://doi.org/10.1371/journal.pgen.1000282
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Gigliucci F, Brambilla G, Tozzoli R, Michelacci V, Morabito S (2017) Comparative analysis of metagenomes of Italian top soil improvers. Environ Res 155:108–115
CAS
PubMed
CrossRef
Google Scholar
Gilbert JA, Field D, Huang Y, Edwards R, Li W, Gilna P, Joint I (2008) Detection of large numbers of novel sequences in the metatranscriptomes of complex marine microbial communities. PLoS One 3(8):E3042. https://doi.org/10.1371/journal.pone.0003042
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Goufo P, Pereira JMM, Jorge TF, Correia CM, Oliveira MR, Rosa EAS, Antonio C, Trindade H (2017) Cowpea (Vigna unguiculata L. Walp.) Metabolomics: osmoprotection as a physiological strategy for drought stress resistance and improved yield. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00586
Gresa MPL, Maltese F, Bellés JM, Conejero V, Kim HK, Choi YH, Verpoorte R (2010) Metabolic response of tomato leaves upon different plant–pathogen interactions. Phytochem Anal 21:89–94
CrossRef
CAS
Google Scholar
Hassink J, Bouwman LA, Zwart KB, Bloem J, Brussaard L (1993) Relationships between soil texture, physical protection of organic matter, soil biota, and C and N mineralization in grassland soils. Geoderma 57:105–128
CAS
CrossRef
Google Scholar
Hédiji H, Diebali W, Cabasson C, Maucourt M, Baldet P, Bertrand A, Zoghlami LB, Deborde C, Moing A, Brouquisse R, Chaibi W, Gallusci P (2010) Effects of long-term cadmium exposure on growth and metabolomic profile of tomato plants. Ecotoxicol Environ Saf 73:1965–1974
PubMed
CrossRef
CAS
Google Scholar
Holmes DE, Shrestha PM, Walker DJF, Dang Y, Nevin KP, Woodard TL, Lovley DR (2017) Metatranscriptomic evidence for direct interspecies electron transfer between Geobacter and Methanothrix species in methanogenic rice paddy soils. Appl Environ Microbiol 83:9–17
CrossRef
Google Scholar
Howe AC, Jansson JK, Malfatti SA, Tringe SG, Tiedje JM, Brown CT (2014) Tackling soil diversity with the assembly of large, complex metagenomes. PNAS 111:4904–4909
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Hugenholtz P (2002) Exploring prokaryotic diversity in the genomic era. Genome Biol 3(2). https://doi.org/10.1186/gb-2002-3-2-reviews0003
Insam H (2001) Developments in soil microbiology since the mid 1960s. Geoderma 100:389–482
CAS
CrossRef
Google Scholar
Ivanova AA, Wegner CE, Kim Y, Liesack W, Dedysh SN (2016) Identification of microbial populations driving biopolymer degradation in acidic peatlands by metatranscriptomic analysis. Mol Ecol 25:4818–4835
CAS
PubMed
CrossRef
Google Scholar
Jahangir M, Farid IBA, Choi YH, Verpoorte R (2008a) Metal ion-inducing metabolite accumulation in Brassica rapa. J Plant Physiol 165:1429–1437
CAS
PubMed
CrossRef
Google Scholar
Jahangir M, Kim HK, Choi YH, Verpoorte R (2008b) Metabolomic response of Brassica rapa submitted to pre-harvest bacterial contamination. Food Chem 107:362–368
CAS
CrossRef
Google Scholar
Jones OAH, Sdepanian S, Lofts S, Svendsen C, Spurgeon DJ, Maguire ML, Griffin JL (2013) Metabolomic analysis of soil communities can be used for pollution assessment. Environ Toxicol Chem 33:61–64
PubMed
CrossRef
CAS
Google Scholar
Jones OAH, Sdepanian S, Lofts S, Svendsen C, Spurgeon DJ, Maguire ML, Griffin JL (2014) Metabolomic analysis of soil communities can be used for pollution assessment. Environ Toxicol Chem 33:61–64
CAS
PubMed
CrossRef
Google Scholar
Júnior GVL, Noronha MF, Sousa STP, Cabral L, Domingos DF, Saber ML, Melo IS, Oliveira VM, Baldrian P (2017) Potential of semiarid soil from Caatinga biome as a novel source for mining lignocellulose-degrading enzymes. FEMS Microbiology 93:62–68
Google Scholar
Keiblinger KM, Fuchs S, Boltenstern SZ, Riedel K (2016) Soil and leaf litter metaproteomics – a brief guideline from sampling to understanding. FEMS Microbiol Ecol 92:66–74
CrossRef
CAS
Google Scholar
Keller M, Hettich R (2009) Environmental proteomics: a paradigm shifts in characterizing microbial activities at the molecular level. Microbiol Mol Biol Rev 73:62–70
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kim JS, Lim HK, Lee MH, Park JH, Hwang EC, Moon BJ, Lee SW (2009) Production of porphyrin intermediates in Escherichia coli carrying soil metagenomic genes. FEMS Microbiol Lett 295:42–49
CAS
PubMed
CrossRef
Google Scholar
Kleiner M, Thorson E, Sharp CE, Dong X, Liu D, Li C, Strous M (2017) Assessing species biomass contributions in microbial communities via metaproteomics. bior Xiv. https://doi.org/10.1101/130575
Konstantinidis KT, Ramette A, Tiedje JM (2006) The bacterial species definition in the genomic era. Philos Trans R Soc B 361:1929–1940
CrossRef
Google Scholar
Liang YS, Choi YH, Kim HK, Linthorst HJM, Verpoorte R (2006) Metabolomic analysis of methyl jasmonate treated Brassica rapa leaves by 2-dimensional NMR spectroscopy. Phytochemistry 67:2503–2511
CAS
PubMed
CrossRef
Google Scholar
Lim HK, Chung EJ, Kim JC, Choi GJ, Jang KS, Chung YR, Cho KY, Lee SW (2005) Characterization of a forest soil metagenome clone that confers indirubin and Indigo production on Escherichia coli. Appl Environ Microbiol 71:7768–7777
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Lin W, WuL LS, Zhang A, Zhou M, Lin R, Wang H, Chen J, Zhang Z, Lin R (2013) Metaproteomic analysis of ratoon sugarcane rhizospheric soil. BMC Microbiol. https://doi.org/10.1186/1471-2180-13-135
Mark GL, Dow JM, Kiely PD, Higgins H, Haynes J, Baysse C, Abbas A, Foley T, Franks A, Morrissey J, Gara F (2005) Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions. G. Louise Mark 102:17454–17459
CAS
Google Scholar
Masuda Y, Itoh H, Shiratori Y, Isobe K, Otsuka S, Senoo K (2017) Predominant but previously looked prokaryotic drivers of reductive nitrogen transformation in paddy soils, revealed by metatranscriptomics. Microbes Environ 62:1347–4405
Google Scholar
Mattarozzi M, Manfredi M, Montanini B, Gosetti F, Sanangelantoni AM, Marengo E, Careri M, Visioli G (2017) A metaproteomic approach dissecting major bacterial functions in the rhizosphere of plants living in serpentine soil. Anal Bioanal Chem 409:2237–2339
Google Scholar
Miller MG (2007) Environmental metabolomics: SWOT analysis (strengths, weaknesses opportunities and threats). J Proteome Res 6:540–545
CAS
PubMed
CrossRef
Google Scholar
Mocalli S, Benedetti A (2010) Exploring research frontiers in microbiology: the challenge of metagenomics in soil microbiology. Res Microbiol 161:497–505
CrossRef
Google Scholar
Molina LG, Fonseca GCD, Morais GLD, Oliveira LFVD, Carvalho JBD, Kulcheski FR, Margis R (2012) Metatranscriptomic analysis of small RNAs present in soybean deep sequencing libraries. Genet Mol Biol 35:292–303
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Moran MA (2009) Metatranscriptomics: eavesdropping on complex microbial communities. Microbe 4:329–335
Google Scholar
Myrold DD, Zeglin LH, Jansson JK (2013) The potential of metagenomic approaches for understanding soil microbial processes. SSSAJ 78:3–10
CrossRef
CAS
Google Scholar
Nacke H, Will C, Herzog S, Nowka B, Engelhaupt M, Daniel R (2011) Identification of novel lipolytic genes and gene families by screening of metagenomic libraries derived from soil samples of the German Biodiversity Exploratories. FEMS Microbiol Ecol 78:188–201
CAS
PubMed
CrossRef
Google Scholar
Nannipieri P (2006) Roles of stabilised enzyme in microbial ecology and enzyme extraction from soil and potential applications in soil proteomics. Soil Biol 8:75–94
CAS
CrossRef
Google Scholar
Peng J, Wegner CE, Liesack W (2017) Short-term exposure of paddy soil microbial communities to salt stress triggers different transcriptional responses of key taxonomic groups. Front Microbiol 8:400–482
PubMed
PubMed Central
Google Scholar
Quaiser A, Ochsenreiter T, Klenk HP, Kletzin A, Treusch AH, Meurer G, Eck J, Sensen CW, Schleper C (2002) First insight into the genome of an uncultivated crenarchaeote from soil. Environ Microbiol 4:603–611
CAS
PubMed
CrossRef
Google Scholar
Quaiser A, Ochsenreiter T, Lanz C, Schuster SC, Treusch AH, Eck J, Schleper C (2003) Acidobacteria form a coherent but highly diverse group within the bacterial domain: evidence from environmental genomics. Mol Microbiol 50:563–575
CAS
PubMed
CrossRef
Google Scholar
Riesenfeld CS, Schloss PD, Handelsman J (2004) Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 38:525–552
CAS
PubMed
CrossRef
Google Scholar
Rochfort S (2005) Metabolomics reviewed: a new “omics” platform technology for systems biology and implications for natural products research. J Nat Prod 68:1813–1820
CAS
PubMed
CrossRef
Google Scholar
Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, Loiacono KA, Lynch BA, MacNei IA, Minor C, Tiong CL, Gilman M, Osburne MS, Clardy J, Handelsman J, Goodman RM (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541–2547
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Schenk PM, Carvalhais LC, Kazan K (2012) Unraveling plant–microbe interactions: can multi-species transcriptomics help? Trends Biotechnol 30:177–184
CAS
PubMed
CrossRef
Google Scholar
Schleper C, Jurgens G, Jonuscheit M (2005) Genomic studies of uncultivated archaea. Nat Rev Microbiol 3:479–488
CAS
PubMed
CrossRef
Google Scholar
Schulze WX, Gleixner G, Kaiser K, Guggenberger G, Mann M, Schulze ED (2005) A proteomic fingerprint of dissolved organic carbon and of soil particles. Oecologia 142:335–343
PubMed
CrossRef
Google Scholar
Sessitsch A, Weilharter A, Gerzabek MH, Kirchmann H, Kandeler E (2001) Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Appl Environ Microbiol 67:4215–4224
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Siggins A, Gunnigle E, Abram F (2012) Exploring mixed microbial community functioning: recent advances in metaproteomics. FEMS Microbiol Ecol 80:265–280
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Singh BK, Campbell CD, Sorenson SJ, Zhou J (2009) Soil genomics. Nat Rev Microbiol 7:756. https://doi.org/10.1038/nrmicro2119-c1
CAS
PubMed
CrossRef
Google Scholar
Stewart FJ, Sharma AK, Bryant JA, Eppley JM, De Long EF (2011) Community transcriptomics reveals universal patterns of protein sequence conservation in natural microbial communities. Genome Biol 12(3):R26. https://doi.org/10.1186/gb-2011-12-3-r26
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Su JQ, Xia Y, Yao HY, Li YY, An XL, Singh BK, Zhang T, Zhu YG (2017) Metagenomic assembly unravel microbial response to redox fluctuation in acid sulfate soil. Soil Biol Biochem 105:244–252
CAS
CrossRef
Google Scholar
Sukul P, Schäkermann S, Bandow JE, Kusnezowa A, Nowrousian M, Leicher LI (2017) Simple discovery of bacterial biocatalysts from environmental samples through functional metaproteomics. Microbiome 64:5–28
Google Scholar
Sun X, Zhang J, Zhang H, Ni Y, Zhang Q, Chen J, Guan Y (2010) The responses of Arabidopsis thaliana to cadmium exposure explored via metabolite profiling. Chemosphere 78:840–845
CAS
PubMed
CrossRef
Google Scholar
Taylor EB, Williams MA (2010) Microbial protein in soil: influence of extraction method and C amendment on extraction and recovery. Microb Ecol 59:390–399
Google Scholar
Toplin JA, Norris TB, Lehr CR, McDermott TR, Castenholz RW (2008) Biogeographic and phylogenetic diversity of Thermoacidophilic Cyanidiales in Yellowstone National Park, Japan, and New Zealand. Appl Environ Microbiol 74:2822–2833
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Topp E, Zhu H, Nour SM, Houot S, Lewis M, Cuppels D (2000) Characterization of an Atrazine-degrading Pseudaminobacter sp. Isolated from Canadian and French Agricultural Soils. Appl Environ Microbiol 66:2773–2782
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Torvisk V, Ovreas L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245
CrossRef
Google Scholar
Treusch AH, Kletzin A, Raddatz G, Ochsenreiter T, Quaiser A, Meurer G, Schuster SC, Schleper C (2004) Characterization of large-insert DNA libraries from soil for environmental genomic studies of Archaea. Environ Microbiol 6:970–980
CAS
PubMed
CrossRef
Google Scholar
Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P, Hugenholtz P, Rubin EM (2005) Comparative metagenomics of microbial communities. Science 308:554–557
Google Scholar
Uga Y (2017) Genomic based ideotype breeding for root system architecture to enhance rice production. Plant Anim Genome 86:12–17
Google Scholar
Urich T, Schleper C (2011) The “double-RNA” approach to simultaneously assess the structure and function of a soil microbial community. https://doi.org/10.1002/9781118010518.ch64
Urich T, Lanzen A, Qu J, Huson DH, Schleper C, Schuster SC (2008) Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS One 3(6):e2527. https://doi.org/10.1371/journal.pone.0002527
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Utturkar SM, Bollmann A, Brzoska RM, Klingeman DM, Epstein SE, Palumbo AV, Brown SD (2013) Draft genome sequence for Caulobacter sp. strain OR37, a Bacterium tolerant to heavy metals. Genome Announc 1(3):e00322–e00313. https://doi.org/10.1128/genomeA.00322-13
PubMed
PubMed Central
Google Scholar
Utturkar SM, Cude WN, Robeson Jr MS, Yang ZK, Klingeman DM, Land ML, Allman SL, Lu TYS, Brown SD, Schadt CW, Podar M, Doktycz MJ, Pelletier DA (2016) Enrichment of root endophytic bacteria from Populus deltoides and single cell genomic analysis. Appl Environ Microbiol 82:5698–5708
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Viant MR (2009) Applications of metabolomics to the environmental sciences. Metabolomics 5:1–2
CAS
CrossRef
Google Scholar
Vinaixa M, Schymanski EL, Neumann S, Navarro M, Salek RM, Yanes O (2016) Mass spectral databases for LC/MS- and GC/MS-based metabolomics: state of the field and future prospects. TrAC Trends Anal Chem 78:23–35
CAS
CrossRef
Google Scholar
Wang DZ, Kong LF, Li YY, Xie ZX (2016) Environmental microbial community proteomics: status, challenges and perspectives. Int J Mol Sci 17:1275–1278
PubMed Central
CrossRef
Google Scholar
Warnecke F, Hess M (2009) A perspective: metatranscriptomics as a tool for the discovery of novel biocatalysts. J Biotechnol 142(1):91–95
CAS
PubMed
CrossRef
Google Scholar
Wellington EMH, Berry A, Krsek M (2003) Resolving functional diversity in relation to microbial community structure in soil: exploiting genomics and stable isotope probing. Curr Opin Microbiol 6:295–301
CAS
PubMed
CrossRef
Google Scholar
Willers C, Rensburg PJJ, Claassens S (2016) Can a metabolomics-based approach be used as alternative to analyse fatty acid methyl esters from soil microbial communities? Soil Biol Biochem 103:417–428
CAS
CrossRef
Google Scholar
Williams MA, Taylor EB, Mula HP (2010) Metaproteomic characterization of a soil microbial community following carbon amendment. Soil Biol Biochem 42:1148–1156
CAS
CrossRef
Google Scholar
Wilmes P, Bond PL (2006) Metaproteomics: studying functional gene expression in microbial ecosystems. Trends Microbiol 14:92–97
CAS
PubMed
CrossRef
Google Scholar
Winding A, Santos SS, Browne PD, Hansen LH, Johansen A, Krogh PH (2016) Metagenomics of bacteria, fungi and protists affected by biochar and earthworms in soil. Environ Microbiol 86:54–58
Google Scholar
Wu L, Wang H, Zhang Z, Lin R, Zhang Z, Lin W (2011) Comparative metaproteomic analysis on consecutively Rehmannia glutinosa-monocultured rhizosphere soil. PLoS One 6:e20611. https://doi.org/10.1371/journal.pone.0020611
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Xie S, Wu H, Chen L, Zang H, Xie Y, Gao X (2015) Transcriptome profiling of Bacillus subtilis OKB105 in response to rice seedlings. BMC Microbiol 15:21. https://doi.org/10.1186/s12866-015-0353-4
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Yadav RK, Bragalini C, Tachet LF, Marmeisse R, Luis P (2016) Metatranscriptomics of soil eukaryotic communities. Microb Environ Genomics 1399:273–287
CAS
CrossRef
Google Scholar
Yergeau E, Sanschagrin S, Beaumier D, Greer CW (2012) Metagenomic analysis of the bioremediation of diesel-contaminated Canadian high Arctic soils. PLoS One 7(1):e30058. https://doi.org/10.1371/journal.pone.0030058
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Zhang J, Sun X, Zhang Z, Ni Y, Zhang Q, Liang X, Xio H, Chen J, Tokuhisa JG (2011) Metabolite profiling of Arabidopsis seedlings in response to exogenous sinalbin and sulfur deficiency. Phytochemistry 72:1767–1778
CAS
PubMed
CrossRef
Google Scholar
Zhou J, Deng Y, Luo F, He Z, Yang Y (2011) Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. MBio 2(4):e00122–e00111. https://doi.org/10.1128/mBio.00122-11
PubMed
PubMed Central
CrossRef
Google Scholar
Zyśko A, Sanguin H, Hayes A, Wardleworth L, Zeef LAH, Sim A, Paterson E, Singh BK, Kertes MA (2012) Transcriptional response of Pseudomonas aeruginosa to a phosphate-deficient Lolium perenne rhizosphere. Plant Soil 359:25–44
CrossRef
CAS
Google Scholar