Supporting Training of Expertise with Wearable Technologies: The WEKIT Reference Framework

Part of the Perspectives on Rethinking and Reforming Education book series (PRRE)


In this chapter, we present a conceptual reference framework for designing augmented reality applications for supporting training. The framework leverages the capabilities of modern augmented reality and wearable technology for capturing the expert’s performance in order to support expertise development. It has been designed in the context of Wearable Experience for Knowledge Intensive Training (WEKIT) project which intends to deliver a novel technological platform for industrial training. The framework identifies the state-of-the-art augmented reality training methods, which we term as “transfer mechanisms” from an extensive literature review. Transfer mechanisms exploit the educational affordances of augmented reality and wearable technology to capture the expert performance and train the trainees. The framework itself is based upon Merrienboer’s 4C/ID model which is suitable for training complex skills. The 4C/ID model encapsulates major elements of apprenticeship models which is a primary method of training in industries. The framework complements the 4C/ID model with expert performance data captured with help of wearable technology which is then exploited in the model to provide a novel training approach for efficiently and effectively mastering the skills required. In this chapter, we will give a brief overview of our current progress in developing this framework.


  1. Allain, K., Dado, B., Gelderen, M. Van, Hokke, O., Oliveira, M., Bidarra, R., … Kybartas, B. (2015). An audio game for training navigation skills of blind children. In 2015 IEEE 2nd VR Workshop on Sonic Interactions for Virtual Environments, SIVE 2015—Proceedings, (March), 49–52.
  2. Asadipour, A., Debattista, K., & Chalmers, A. (2016). Visuohaptic augmented feedback for enhancing motor skills acquisition. Visual Computer, 1–11.
  3. Bacca, J., Fabregat, R., Baldiris, S., Graf, S., Kinshuk, Fabregat, R., & Graf, S. (2014). Augmented reality trends in education: A systematic review of research and applications. Educational Technology & Society, 17(4), 133–149.Google Scholar
  4. Bjork, S., & Holopainen, J. (2004). Patterns in game design (Game Development Series). Game development series (1st ed., Vol. 54). Hingham: Charles River Media.
  5. Bordegoni, M., Ferrise, F., Carrabba, E., Donato, M. Di, Fiorentino, M., & Uva, A. E. (2014). An application based on augmented reality and mobile technology to support remote maintenance. doi: 10.2312/eurovr.20141351.Google Scholar
  6. Bower, M., & Sturman, D. (2015). What are the educational affordances of wearable technologies? Computers & Education, 88, 343–353. doi: 10.1016/j.compedu.2015.07.013.CrossRefGoogle Scholar
  7. Buń, P., Górski, F., Wichniarek, R., Kuczko, W., & Zawadzki, P. (2015). Immersive educational simulation of medical ultrasound examination. Procedia Computer Science, 75(Vare), 186–194.
  8. Caudell, T. P., & Mizell, D. W. (1992). Augmented reality: an application of heads-up display technology to manual manufacturing processes. In Proceedings of the Twenty-Fifth Hawaii International Conference on System Sciences (Vol. ii, pp. 659–669, vol. 2). IEEE.
  9. Chang, Y.-J., Kang, Y.-S., Chang, Y.-S., & Liu, H.-H. (2015). ARCoach 2.0: Optimizing a vocational prompting system based on augmented reality for people with cognitive impairments. In Proceedings of the 17th International ACM SIGACCESS Conference on Computers & Accessibility, 313–314.
  10. Chia, F.-Y., & Saakes, D. (2014). Interactive Training Chopsticks to Improve Fine Motor Skills, 57:1–57:4.
  11. Chinthammit, W., Merritt, T., Pedersen, S., Williams, A., Visentin, D., Rowe, R., et al. (2014). Ghostman: Augmented reality application for telerehabilitation and remote instruction of a novel motor skill. BioMed Research International, 2014, 1–7. doi: 10.1155/2014/646347.CrossRefGoogle Scholar
  12. Collins, A. (1991). Cognitive apprenticeship and instructional technology. Educational Values and Cognitive Instruction: …, 121–138. Retrieved from
  13. Condino, S., Viglialoro, R. M., Fani, S., Bianchi, M., Morelli, L., Ferrari, M., … Ferrari, V. (2016). Tactile augmented reality for arteries palpation in open surgery training (pp. 186–197). Cham: Springer.
  14. Datcu, D., Cidota, M., Lukosch, S., Oliveira, D. M., & Wolff, M. (2014). Virtual co-location to support remote assistance for inflight maintenance in ground training for space missions. In 15th International Conference on Computer Systems and Technologies, CompSysTech 2014, 883, 134–141.
  15. de Ravé, E. G., Jiménez-Hornero, F. J., Ariza-Villaverde, A. B., & Taguas-Ruiz, J. (2016). DiedricAR: A mobile augmented reality system designed for the ubiquitous descriptive geometry learning. Multimedia Tools and Applications, 75(16), 9641–9663. doi: 10.1007/s11042-016-3384-4.CrossRefGoogle Scholar
  16. Djajadiningrat, T. (2016). Virtual Trainer : A low cost AR simulation of a sudden cardiac arrest emergency, 607–618.
  17. Ericsson, K. A. (2006). The Cambridge handbook of expertise and expert performance (Chapter). In The Cambridge handbook of expertise and expert performance (pp. 523–538). Cambridge: Cambridge University Press. Retrieved from
  18. Ericsson, K. A. (Karl A., & Smith, J. (1991). Toward a general theory of expertise : Prospects and limits. Cambridge: Cambridge University Press.Google Scholar
  19. Ericsson, K. A., Krampe, R. R. T., Tesch-Romer, C., Ashworth, C., Carey, G., Grassia, J., … Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100(3), 363–406.
  20. Feldon, D. F. (2007). The implications of research on expertise for curriculum and pedagogy. Educational Psychology Review, 19(2), 91–110. doi: 10.1007/s10648-006-9009-0.CrossRefGoogle Scholar
  21. Fominykh, M., Wild, F., Smith, C., Alvarez, V., & Morozov, M. (2015). An overview of capturing live experience with virtual and augmented reality, 298–305.
  22. Freschi, C., Parrini, S., Dinelli, N., Ferrari, M., & Ferrari, V. (2015). Hybrid simulation using mixed reality for interventional ultrasound imaging training. International Journal of Computer Assisted Radiology and Surgery, 10(7), 1109–1115. doi: 10.1007/s11548-014-1113-x.CrossRefGoogle Scholar
  23. Friedrich, W. (2002). ARVIKA-augmented reality for development, production and service. In Proceedings—International Symposium on Mixed and Augmented Reality, ISMAR 2002 (pp. 3–4). IEEE Computer Society
  24. Funk, M., Heusler, J., Akcay, E., Weiland, K., & Schmidt, A. (2016). Haptic, auditory, or visual? Towards optimal error feedback at manual assembly workplaces. In Proceedings of the 9th ACM International Conference on PErvasive Technologies Related to Assistive Environments, 6. ACM.
  25. Gallegos-Nieto, E., Medellín-Castillo, H. I., González-Badillo, G., Lim, T., & Ritchie, J. (2017). The analysis and evaluation of the influence of haptic-enabled virtual assembly training on real assembly performance. International Journal of Advanced Manufacturing Technology, 89(1–4), 581–598. doi: 10.1007/s00170-016-9120-4.CrossRefGoogle Scholar
  26. Hahn, J., Ludwig, B., & Wolff, C. (2015). Augmented reality-based training of the PCB assembly process. In Proceedings of the 14th International Conference on Mobile and Ubiquitous Multimedia, (Mum), 395–399.
  27. Haug, T., Rozenblit, J. W., & Buchenrieder, K. (2014). Movement analysis in laparoscopic surgery training. The Society for Modeling and Simulation International. Retrieved from
  28. Henderson, S., & Feiner, S. (2011). Exploring the benefits of augmented reality documentation for maintenance and repair. IEEE Transactions on Visualization and Computer Graphics, 17(10), 1355–1368. doi: 10.1109/TVCG.2010.245.CrossRefGoogle Scholar
  29. Hinds, P. (1999). The curse of expertise: The effects of expertise and debiasing methods on prediction of novice performance. Journal of Experimental Psychology: Applied, 5(2), 205–221. doi: 10.1037/1076-898X.5.2.205.Google Scholar
  30. Hinds, P., Patterson, M., & Pfeffer, J. (2001). Bothered by abstraction: the effect of expertise on knowledge transfer and subsequent novice performance. The Journal of Applied Psychology, 86(6), 1232–1243. Retrieved from
  31. Hoffman, R. R. (2014). The psychology of expertise : Cognitive research and empirical AI. Boca Raton: Taylor and Francis.Google Scholar
  32. Jang, S. A., Kim, H. II, Woo, W., & Wakefield, G. (2014). AiRSculpt: A wearable augmented reality 3D sculpting system. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8530 LNCS, 130–141.
  33. Jarodzka, H., Van Gog, T., Dorr, M., Scheiter, K., & Gerjets, P. (2013). Learning to see: Guiding students’ attention via a Model’s eye movements fosters learning. Learning and Instruction, 25, 62–70. doi: 10.1016/j.learninstruc.2012.11.004.CrossRefGoogle Scholar
  34. Juanes, J. A., Gómez, J. J., Peguero, P. D., & Ruisoto, P. (2015). Practical applications of movement control technology in the acquisition of clinical skills, 13–17.Google Scholar
  35. Ke, F., Lee, S., & Xu, X. (2016). Teaching training in a mixed-reality integrated learning environment. Computers in Human Behavior, 62, 212–220. doi: 10.1016/j.chb.2016.03.094.CrossRefGoogle Scholar
  36. Kim, S., Aleven, V., & Dey, A. K. (2014). Understanding expert-novice differences in geometry problem-solving tasks. In Proceedings of the Extended Abstracts of the 32nd Annual ACM Conference on Human Factors in Computing Systems—CHI EA ’14, 1867–1872.
  37. Kowalewski, K.-F., Hendrie, J. D., Schmidt, M. W., Garrow, C. R., Bruckner, T., Proctor, T., … Nickel, F. (2016). Development and validation of a sensor- and expert model-based training system for laparoscopic surgery: the iSurgeon. Surgical Endoscopy, 1–11.
  38. Kwon, Y., Lee, S., Jeong, J., & Kim, W. (2014). HeartiSense: A novel approach to enable effective basic life support training without an instructor. In 32nd Annual ACM Conference on Human Factors in Computing Systems, CHI 2014, 431–434.
  39. Lahanas, V., Loukas, C., Smailis, N., & Georgiou, E. (2015). A novel augmented reality simulator for skills assessment in minimal invasive surgery. Surgical Endoscopy, 29(8), 2224–2234. doi: 10.1007/s00464-014-3930-y.CrossRefGoogle Scholar
  40. Liu, J., Mei, J., Zhang, X., Lu, X., & Huang, J. (2016). Augmented reality-based training system for hand rehabilitation. Multimedia Tools and Applications, 1–21.
  41. Lok, B., Chuah, J. H., Robb, A., Cordar, A., Lampotang, S., Wendling, A., et al. (2014). Mixed-reality humans for team training. IEEE Computer Graphics and Applications, 34(3), 72–75. doi: 10.1109/MCG.2014.57.CrossRefGoogle Scholar
  42. Manuri, F., Sanna, A., Lamberti, F., Paravati, G., & Pezzolla, P. (2014). A workflow analysis for implementing ar-based maintenance procedures. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 8853, pp. 185–200). Cham: Springer.
  43. Martín-Gutiérrez, J., Saorín, J. L., Contero, M., & Alcañiz, M. (2010). AR-Dehaes: An educational toolkit based on augmented reality technology for learning engineering graphics. In Proceedings—10th IEEE International Conference on Advanced Learning Technologies, ICALT 2010 (pp. 133–137). IEEE.
  44. Matassa, A., & Morreale, F. (2016). Supporting singers with tangible and visual feedback. In Proceedings of the International Working Conference on Advanced Visual Interfaces—AVI ’16, 328–329.
  45. McDaniel, M. A., Schmidt, F. L., & Hunter, J. E. (1988). Job experience correlates of job performance. Journal of Applied Psychology, 73(2), 327–330. doi: 10.1037/0021-9010.73.2.327.CrossRefGoogle Scholar
  46. Meleiro, P., Rodrigues, R., Jacob, J., & Marques, T. (2014). Natural user interfaces in the motor development of disabled children. Procedia Technology, 13, 66–75. doi: 10.1016/j.protcy.2014.02.010.CrossRefGoogle Scholar
  47. Melo, M., & Miranda, G. (2014). Applying the 4C-ID model to the design of a digital educational resource for teaching electric circuits: Effects on student achievement. … Workshop on Interaction Design in Educational …, 10(3), 207–221.
  48. Merrill, M. D. (2006). Hypothesized performance on complex tasks as a function of scaled instructional strategies. Handling Complexity in Learning Environment: Theory and Research, (October 2005), 265–281. Retrieved from
  49. Milazzo, N., Farrow, D., & Fournier, J. F. (2016). Effect of implicit perceptual-motor training on decision-making skills and underpinning gaze behavior in combat athletes. Perceptual and Motor Skills, 1–24.
  50. Naik, V. N., Matsumoto, E. D., Houston, P. L., Hamstra, S. J., Yeung, R. Y., Mallon, J. S., & Martire, T. M. (2001). Fiberoptic orotracheal intubation on anesthetized patients: Do manipulation skills learned on a simple model transfer into the operating room? Anesthesiology, 95(2), 343–8. Retrieved from
  51. Neelen, M., & Kirschner, P. (2016). Deliberate practice: What it is and what it isn’t. Retrieved February 14, 2017, from
  52. Nilsson, S., Johansson, B., Jönsson, A., Orn Johansson, B., & Onsson, A. (2011). Linköping University Post Print Using AR to support cross-organisational collaboration in dynamic tasks using AR to support cross-organisational collaboration in dynamic tasks. Retrieved from
  53. Patterson, R. E., Pierce, B. J., Bell, H. H., & Klein, G. (2010). Implicit learning, tacit knowledge, expertise development, and naturalistic decision making. Journal of Cognitive Engineering and Decision Making, 4(4), 289–303. doi: 10.1177/155534341000400403.CrossRefGoogle Scholar
  54. Perlini, S., Salinaro, F., Santalucia, P., & Musca, F. (2014). Simulation-guided cardiac auscultation improves medical students’ clinical skills: The Pavia pilot experience. Internal and Emergency Medicine, 9(2), 165–172. doi: 10.1007/s11739-012-0811-z.CrossRefGoogle Scholar
  55. Poelman, R., Akman, O., Lukosch, S., & Jonker, P. (2012). As if being there: Mediated reality for crime scene investigation. Proceeding of ACM 2012 Conference on Computer Supported Cooperative Work—CSCW ’12(5), 1267.
  56. Radu, I., Doherty, E., DiQuollo, K., McCarthy, B., & Tiu, M. (2015). Cyberchase shape quest: Pushing geometry education boundaries with augmented reality. In Proceedings of the 14th International Conference on Interaction Design and Children (pp. 430–433).
  57. Roads, B., Mozer, M. C., & Busey, T. A. (2016). Using highlighting to train attentional expertise. PLoS ONE, 11(1), e0146266.
  58. Rozenblit, J. W., Feng, C., Riojas, M., Napalkova, L., Hamilton, A. J., Hong, M., … Sargent, R. G. (2010). The computer assisted surgical trainer: Design, models, and implementation. In Winter Simulation Conference, 1(Meadows 1989), 274–277.
  59. Sabine, W., Uli, B., Timo, E., Matteo, P., Webel, S., Bockholt, U., … Preusche, C. (2011). Augmented reality training for assembly and maintenance skills. In BIO Web of Conferences, 97, 3–6.
  60. Sand, O., Büttner, S., Paelke, V., & Röcker, C. (2016). smARt.Assembly—projection-based augmented reality for supporting assembly workers (pp. 643–652). Cham: Springer.
  61. Sanfilippo, F. (2017). A multi-sensor fusion framework for improving situational awareness in demanding maritime training. Reliability Engineering & System Safety, 161(February 2016), 12–24.
  62. Sano, Y., Sato, K., Shiraishi, R., & Otsuki, M. (2016). Sports support system : Augmented ball game for filling gap between player skill levels, 361–366.Google Scholar
  63. Sarfo, F. K., & Elen, J. (2006). Technical expertise development in secondary technical schools: Effects of ICT-enhanced 4C/ID learning environments. In Fourth IEEE International Workshop on Technology for Education in Developing Countries, TEDC 2006 (Vol. 2006, pp. 62–65). IEEE.
  64. Schneider, J., Börner, D., van Rosmalen, P., & Specht, M. (2015, February 11). Augmenting the senses: A review on sensor-based learning support. Sensors (Basel, Switzerland). Multidisciplinary Digital Publishing Institute.
  65. Schulz, R., & Curnow, C. (1988). Peak performance and age among superathletes: Track and field, swimming, baseball, tennis, and golf. Journal of Gerontology, 43(5), P113–20. Retrieved from
  66. See, Z. S. (2016). Medical Learning Murmurs Simulation with Mobile Audible Augmented Reality.Google Scholar
  67. Sousa, L., Alves, R., & Rodrigues, J. M. F. (2016). Augmented reality system to assist inexperienced pool players. Computational Visual Media, 2(2), 183–193. doi: 10.1007/s41095-016-0047-3.CrossRefGoogle Scholar
  68. Sternberg, R. J. (2000). Practical intelligence in everyday life. Cambridge: Cambridge University Press. Retrieved from
  69. Stunt, J. J., Kerkhoffs, G. M. M. J., Horeman, T., van Dijk, C. N., & Tuijthof, G. J. M. (2016). Validation of the PASSPORT V2 training environment for arthroscopic skills. Knee Surgery, Sports Traumatology, Arthroscopy, 24(6), 2038–2045. doi: 10.1007/s00167-014-3213-0.CrossRefGoogle Scholar
  70. van Merriënboer, J. J. G., & Paas, F. (2003). Powerful learning and the many faces of instructional design: Toward a framework for the design of powerful learning environments. In Powerful learning environments: Unravelling basic components and dimensions. (pp. 3–20). Retrieved from
  71. van Merriënboer, J. J. G., Clark, R. E., & Croock, M. B. M. (2002). Blueprints for complex learning: The 4C/ID-model. Educational Technology Research and Development, 50(2), 39–64. doi: 10.1007/BF02504993.CrossRefGoogle Scholar
  72. Wagner, R. K., & Sternberg, R. J. (1990). Street smarts. West Orange: Leadership Library of America.Google Scholar
  73. Wang, X., & Dunston, P. S. (2011). Comparative effectiveness of mixed reality-based virtual environments in collaborative design. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 41(3), 284–296. doi: 10.1109/TSMCC.2010.2093573.CrossRefGoogle Scholar
  74. Wei, Y., Yan, H., Bie, R., Wang, S., & Sun, L. (2014). Performance monitoring and evaluation in dance teaching with mobile sensing technology. Personal and Ubiquitous Computing, 18(8), 1929–1939. doi: 10.1007/s00779-014-0799-7.CrossRefGoogle Scholar
  75. Yarnall, L., Zhu, Z., Branzoi, V., Wolverton, M., Murray, G., Vitovitch, N., … Kumar, R. (2014). AR-mentor: Augmented reality based mentoring system. In ISMAR 2014—IEEE International Symposium on Mixed and Augmented Reality—Science and Technology 2014, Proceedings, (November), 17–22.
  76. Zao, J. K., Jung, T.-P., Chang, H.-M., Gan, T.-T., Wang, Y.-T., Lin, Y.-P., … Medeiros, F. A. (2016). Augmenting VR/AR applications with EEG/EOG monitoring and oculo-vestibular recoupling. In Proceedings, Part I, 10th International Conference on Foundations of Augmented Cognition: Neuroergonomics and Operational Neuroscience—Volume 9743 (pp. 121–131). Springer, New York,
  77. Zhao, Y., Curtin, K., Salunke, S., Huynh, N., Leavitt, A., & Zeagler, C. (2016). E-Archery: Prototype wearable for analyzing archery release. In UbiComp 2016 Adjunct—Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing (pp. 908–913).
  78. Zhou, F., Dun, H. B. L., & Billinghurst, M. (2008). Trends in augmented reality tracking, interaction and display: A review of ten years of ISMAR. In Proceedings—7th IEEE International Symposium on Mixed and Augmented Reality 2008, ISMAR 2008 (pp. 193–202). IEEE.
  79. Zhu, J., Ong, S. K., & Nee, A. Y. C. (2014). A context-aware augmented reality system to assist the maintenance operators. International Journal on Interactive Design and Manufacturing, 8(4), 293–304. doi: 10.1007/s12008-013-0199-7.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Open University of NetherlandsHeerlenNetherlands
  2. 2.Europlan UK LtdLondonUK
  3. 3.Oxford Brookes UniversityOxfordUK

Personalised recommendations