Skip to main content

Gastric Pathology and Metalloproteinases

  • Chapter
  • First Online:
Book cover Pathophysiological Aspects of Proteases

Abstract

The spectrum of gastric pathologies involves heterogeneity with respect to biochemical mechanisms and clinical outcome and is globally common. Each year, 5–6 million people worldwide are affected by gastric ulcer, gastric cancer and inflammatory bowel diseases, and mortality rate being >50% shows steep increase in incidence. Hence, understanding the underlying pathogenesis and better therapeutic strategies remain the major challenges in gastroenterology field. Current knowledge of gastric pathology reveals that extracellular proteases vastly influence functional irregularities of cells along with their responses to microenvironment. Based on studies on metalloproteinases and their inhibitors, it is well accepted about their important roles in physiological developmental processes as well as pathological conditions. From past several years of extensive research on matrix, metalloproteinases (MMPs) establish their critical role in several cellular functions including proliferation, apoptosis and angiogenesis. MMPs are a family of “molecular scissors” with ambivalent actions and ability to cleave extracellular matrix (ECM) proteins that in turn facilitate tissue remodelling. Approximately, 27 subtypes of MMPs are there having mutual interaction among each of them in gastrointestinal disorders. Functional overlap between the MMPs leads to non-specificity, which makes designing MMP inhibitors more difficult. Thus, specific MMP inhibitors would be promising therapeutic tool against inflammatory diseases including gastric diseases. This chapter illustrates the new insights into mechanism of MMP regulation in gastrointestinal inflammatory disorders encompassing clinical trials for MMP inhibitors and new therapeutic strategies by targeting specific MMP(s) to control gastrointestinal pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Verma RP, Hansch C (2007) Matrix metalloproteinases (MMPs): chemical-biological functions and (Q)SARs. Bioorg Med Chem 15:2223–2268

    Article  CAS  PubMed  Google Scholar 

  2. Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3:a005058

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15:786–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gomis-Rüth FX (2009) Catalytic domain architecture of metzincin metalloproteases. J Biol Chem 284:15353–15357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Lund J, Olsen OH, Sørensen ES, Stennicke HR, Petersen HH, Overgaard MT (2013) ADAMDEC1 is a metzincin metalloprotease with dampened proteolytic activity. J Biol Chem 288:21367–21375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ikonomidou C (2014) Matrix metalloproteinases and epileptogenesis. Mol Cell Pediatr 1:6

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mizoguchi H, Yamada K (2013) Roles of matrix metalloproteinases and their targets in epileptogenesis and seizures. Clin Psychopharmacol Neurosci 11:45–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gong Y, Chippada-Venkata UD, Oh WK (2014) Roles of matrix metalloproteinases and their natural inhibitors in prostate cancer progression. Cancers 6:1298–1327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Massova I, Kotra LP, Fridman R, Maboshery S (1998) Matrix metalloproteinases: structures, evolution and diversification. FASEB J 12:1075–1095

    Article  CAS  PubMed  Google Scholar 

  10. Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494

    Article  CAS  PubMed  Google Scholar 

  11. Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Harper E, Bloch KJ, Gross J (1971) The zymogen of tadpole collagenase. Biochemistry 10(16):3035–3041

    Article  CAS  PubMed  Google Scholar 

  13. Ra H-J, Parks WC (2007) Control of matrix metalloproteinase catalytic activity. Matrix Biol 26:587–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Löffek S, Schilling O, Franzke C-W (2011) Biological role of matrix metalloproteinases: a critical balance. Eur Respir J 38:191–208

    Article  PubMed  CAS  Google Scholar 

  15. Andrian E, Mostefaoui Y, Rouabhia M, Grenier D (2007) Regulation of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases by Porphyromonas gingivalis in an engineered human oral mucosa model. J Cell Physiol 211:56–62

    Article  CAS  PubMed  Google Scholar 

  16. Carvalho HF, Roque ACA, Iranzo O, Branco RJF (2015) Comparison of the internal dynamics of metalloproteases provides new insights on their function and evolution. PLoS ONE 10:e0138118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Gomis-Rüth FX (2003) Structural aspects of the metzincin clan of metalloendopeptidases. Mol Biotechnol 24:157–202

    Article  PubMed  Google Scholar 

  18. Tallant C, Marrero A, Gomis-Rüth FX (2010) Matrix metalloproteinases: fold and function of their catalytic domains. Biochimica Biophysica Acta Mol Cell Res 1803:20–28

    Article  CAS  Google Scholar 

  19. Fridman R (2003) Surface association of secreted metalloproteinases. Curr Top Dev Biol Elsevier Sci. 54:75–100

    Google Scholar 

  20. Cerdà-Costa N, Gomis-Rüth FX (2014) Architecture and function of metallopeptidase catalytic domains. Protein Sci 23:123–144

    Article  PubMed  CAS  Google Scholar 

  21. Duan JX, Rapti M, Tsigkou A, Lee MH (2015) Expanding the activity of tissue inhibitors of metalloproteinase (TIMP)-1 against surface-anchored metalloproteinases by the replacement of its C-terminal domain: implications for anti-cancer effects. PLoS ONE 10(8):e0136384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases structure, function, and biochemistry. Circ Res 92:827–839

    Article  CAS  PubMed  Google Scholar 

  23. Brew K, Nagase H (2010) The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta 1803:55–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nita M, Grzybowski A (2016) The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev 3164734:1–23

    Article  CAS  Google Scholar 

  25. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fu X, Kassim SY, Parks WC, Heinecke JW (2003) Hypochlorous acid generated by myeloperoxidase modifies adjacent tryptophan and glycine residues in the catalytic domain of matrix metalloproteinase-7 (matrilysin): an oxidative mechanism for restraining proteolytic activity during inflammation. J Biol Chem 278:28403–28409

    Article  CAS  PubMed  Google Scholar 

  27. Langton KP, McKie N, Smith BM, Brown NJ, Barker MD (2005) Sorsby’s fundus dystrophy mutations impair turnover of TIMP-3 by retinal pigment epithelial cells. Hum Mol Genet 14(23):3579–3586

    Article  CAS  PubMed  Google Scholar 

  28. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8(3):221–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Egeblad M, Werb Z (2002) New functions for matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174

    Article  CAS  PubMed  Google Scholar 

  30. Martin TA, Ye L, Slanders AJ, Lane J, Jiang WG (2013) Cancer invasion and metastasis: molecular and cellular perspective. In: Jandial R Metastatic cancer: clinical and biological perspectives. Landes Bioscience

    Google Scholar 

  31. Rundhaug JE (2003) Matrix metalloproteinases, angiogenesis, cancer. Clin Cancer Res 9:551–554

    PubMed  Google Scholar 

  32. Sang QXA (1998) Complex role of matrix metalloproteinases in angiogenesis. Cell Res 8:171–177

    Article  CAS  PubMed  Google Scholar 

  33. Murch SH, MacDonald TT, Walker-Smith JA, Lionetti P, Levin M, Klein NJ (1993) Disruption of sulphated glycosaminoglycans in intestinal inflammation. Lancet 341:711–714

    Article  CAS  PubMed  Google Scholar 

  34. O’Sullivan S, Gilmer JF, Medina C (2015) Matrix metalloproteinases in inflammatory bowel disease: an update. Med Inflamm 964131:1–19

    Article  CAS  Google Scholar 

  35. Shihab PK, Al-Roub A, Al-Ghanim M, Al-Mass A, Behbehani K, Ahmad R (2015) TLR2 and AP-1/NF-kappaB are involved in the regulation of MMP-9 elicited by heat killed Listeria monocytogenes in human monocytic THP-1 cells. J Inflamm 12:32–40

    Article  CAS  Google Scholar 

  36. Hansen JM, Hallas J, Lauritsen JM, Bytzer P (1996) Non-steroidal anti-inflammatory drugs and ulcer complications: a risk factor analysis for clinical decision-making. Scand J Gastroenterol 31:126–130

    Article  CAS  PubMed  Google Scholar 

  37. Matsui H, Shimokawa O, Kanekon T, Nagano Y, Rai K, Hyodo I (2011) The pathophysiology of non-steroidal anti-inflammatory drug (NSAID) induced mucosal injuries in stomach and small intestine. J Clin Biochem Nutr 48(2):107–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborty S, Dhama K (2014) Oxidative stress, prooxidants, and antioxidants: the interplay. BioMed Res Int ID 761264:19 p

    Google Scholar 

  39. Musumba C, Pritchard DM, Pirmohamed M (2009) Cellular and molecular mechanisms of NSAID-induced peptic ulcers. Aliment Pharmacol Ther 30(6):517–531

    Article  CAS  PubMed  Google Scholar 

  40. Frankowski H, Gu YH, Heo JH, Milner R, del Zoppo GJ (2012) Use of gel zymography to examine matrix metalloproteinase (gelatinase) expression in brain tissue or in primary glial cultures. Methods Mol Biol 814:221–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Verma S, Kesh K, Ganguly N, Jana S, Swarnakar S (2014) Matrix metalloproteinases and gastrointestinal cancers: impacts of dietary antioxidants. World J Biol Chem 26:355–376

    Article  Google Scholar 

  42. Wroblewski LE, Peek M, Wilson KT (2010) Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin Microbiol Rev 23:713–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cheng HC, Yang HB, Chang WL, Chen WY, Yeh YC, Sheu BS (2012) Expressions of MMPs and TIMP-1 in gastric ulcers may differentiate H. pylori infected from NSAID-related ulcers. Sci World J ID 539316:9

    Google Scholar 

  44. Cheng CL, Guo JS, Luk J, Koo MWL (2004) The healing effects of Centella and asiaticoside on acetic acid induced gastric ulcers in rats. Life Sci 74(18):2237–2249

    Article  CAS  PubMed  Google Scholar 

  45. Ganguly K, Kundu P, Banerjee A, Reiter RJ, Swarnakar S (2006) Hydrogen peroxide-mediated downregulation of matrix metalloproteinase-2 in indomethacin-induced acute gastric ulceration is blocked by melatonin and other antioxidants. Free Rad Biol Med 41:911–925

    Article  CAS  PubMed  Google Scholar 

  46. Witztum JL, Steinberg D (1991) Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 88:1785–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kar S, Subbaram S, Carrico PM, Melendez JA (2010) Redox-control of matrix metalloproteinase-1: a critical link between free radicals, matrix remodeling and degenerative disease. Respir Physiol Neurobiol 31:299–306

    Article  CAS  Google Scholar 

  48. Singh LP, Kundu P, Ganguly K, Mishra A, Swarnakar S (2007) Novel role of famotidine in downregulation of matrix metalloproteinase-9 during protection of ethanol-induced acute gastric ulcer. Free Rad Biol Med 43:289–299

    Article  CAS  Google Scholar 

  49. Chakraborty S, Stalin S, Das N, Choudhury ST, Swarnakar Ghosh S S (2012) The use of nano-quercetin to arrest mitochondrial damage and MMP-9 upregulation during prevention of gastric inflammation induced by ethanol in rat. Biomaterials 33:2991–3001

    Article  CAS  PubMed  Google Scholar 

  50. Rahman R, Asombang AW, Ibdah JA (2014) Characteristics of gastric cancer in Asia. World J Gastroenterol 20:4483–4490

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fox JG, Wang TC (2007) Inflammation, atrophy, and gastric cancer. J Clin Invest 117:60–69

    Article  CAS  PubMed  Google Scholar 

  52. Correa P, Piazuelo MB (2011) Helicobacter pylori infection and gastric adenocarcinoma. US Gastroenterol Hepatol Rev 7(1):59–64

    PubMed  PubMed Central  Google Scholar 

  53. Dey S, Ghosh N, Saha D, Kesh K, Gupta A, Swarnakar S (2014) Matrix metalloproteinase-1 (MMP-1) promoter polymorphisms are well linked with lower stomach tumor formation in eastern Indian Population. PLoS ONE 9:e88040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Witty JP, McDonnell S, Newell KJ, Cannon P, Navre M, Tressler RJ, Matrisian LM (1994) Modulation of matrilysin levels in colon carcinoma cell lines affects tumorigenicity in vivo. Cancer Res 54:4805–4812

    CAS  PubMed  Google Scholar 

  55. Dey S, Stalin S, Gupta A, Saha D, Kesh K, Swarnakar S (2012) Matrix metalloproteinase-3 gene promoter polymorphisms and their haplotypes are associated with gastric cancer risk in eastern Indian population. Mol Carcinog 51:E42–E53

    Article  CAS  PubMed  Google Scholar 

  56. Kesh K, Subramanian L, Ghosh N, Gupta V, Gupta A, Bhattacharya S, Mahapatra NR, Swarnakar S (2015) Association of MMP7-181A → G promoter polymorphism with gastric cancer risk. J Biol Chem 290:14391–14406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shan YQ, Ying RC, Zhou CH, Zhu AK, Ye J, Zhu W et al (2015) MMP-9 is increased in the pathogenesis of gastric cancer by the mediation of HER2. Cancer Gene Ther 22:101–107

    Article  CAS  PubMed  Google Scholar 

  58. Yoo YA, Kang MH, Lee HJ, Kim BH, Park JK, Kim HK, Kim JS, Oh SC (2011) Sonic hedgehog pathway promotes metastasis and lymphangiogenesis via activation of Akt, EMT, and MMP-9 pathway in gastric cancer. Cancer Res 71:61–69

    Google Scholar 

  59. Alakus H, Grass AG, Hennecken JK, Bollschweiler E, Schulte C, Drebber U, Baldus SE, Metzger R, Hölscher AH, Mönig SP (2008) Clinicopathological significance of MMP-2 and its specific inhibitor TIMP-2 in gastric cancer. Histol Histopathol 23:917–923

    CAS  PubMed  Google Scholar 

  60. Markman JL, Shiao SL (2015) Impact of the immune system and immunotherapy in colorectal cancer. J Gastrointest Oncol 6:208–223

    PubMed  PubMed Central  Google Scholar 

  61. Huang Z, Huang D, Ni S, Peng Z, Sheng W, Du X (2010) Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancers. Int J Cancer 127(1):118–126

    Article  CAS  PubMed  Google Scholar 

  62. Fanjul-Fernández M, Folgueras AR, Cabrera S, López-Otín C (2010) Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochim Biophys Acta Mol Cell Res 1803:3–19

    Article  CAS  Google Scholar 

  63. Grivennikov SI (2013) Inflammation and colorectal cancer: colitis-associated neoplasia. Semin Immunopathol 35(2):229–244

    Article  CAS  PubMed  Google Scholar 

  64. Said AH, Raufman JP, Xie G (2014) The role of matrix metalloproteinases in colorectal cancer. Cancers 6(1):366–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cherukua HR, Mohamedalib A, Cantora DI, Tanc SH, Niced EC, Baker MS (2015) Transforming growth factor-b, MAPK and Wnt signaling interactions in colorectal cancer. EuPa Open Proteom 8:104–115

    Article  CAS  Google Scholar 

  66. Iiizumi M, Liu W, Pai SK, Furuta E, Watabe K (2008) Drug development against metastasis-related genes and their pathways: a rationale for cancer therapy. Biochim Biophys Acta 1786(2):87–104

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhiqin W, Palaniappan S, Ali R, Affendi R (2014) Inflammatory bowel disease-related colorectal cancer in the Asia-Pacific region: past, present, and future. Intest Res 12:194–204

    Article  PubMed  PubMed Central  Google Scholar 

  68. M’Koma AE (2013) Inflammatory bowel disease: an expanding global health problem. Clin Med Insights Gastroenterol 6:33–47

    PubMed  PubMed Central  Google Scholar 

  69. Medina C, Radomski MW (2006) Role of matrix metalloproteinases in intestinal inflammation. J Pharmacol 318(3):933–938

    CAS  Google Scholar 

  70. O’Sullivan S, Gilmer JF, Medina C (2015) Matrix metalloproteinases in inflammatory bowel disease: an update. Mediators Inflamm ID 964131:19

    Google Scholar 

  71. Deban L, Correale C, Vetrano S, Malesci A, Danese S (2008) Multiple pathogenic roles of microvasculature in inflammatory bowel disease: a jack of all trades. Am J Pathol 172(6):1457–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lakatos G, Sipos F, Miheller P, Hritz I, Varga MZ, Juhasz M et al (2011) The behavior of matrix metalloproteinase-9 in lymphocytic colitis, collagenous colitis and ulcerative colitis. Pathol Oncol Rep 18(1):85–91

    Article  CAS  Google Scholar 

  73. Shimoda M, Horiuchi K, Sasaki A et al (2016) Epithelial cell-derived a disintegrin and metalloproteinase-17 confers resistance to colonic inflammation through EGFR activation. EBioMedicine 5:114–124

    Article  PubMed  PubMed Central  Google Scholar 

  74. Walter L, Harper C, Garg P (2013) Role of matrix metalloproteinases in inflammation/colitis-associated colon cancer. Immuno-Gastroenterol 2:22–28

    Google Scholar 

  75. Laroui H, Geem D, Xiao B et al (2014) Targeting intestinal inflammation with CD98 siRNA/PEI—loaded nanoparticles. Mol Ther 22(1):69–80

    Article  CAS  PubMed  Google Scholar 

  76. Godoy-Santos AL, Trevisan R, Fernandes TD, dos Santos MCLG (2011) Association of MMP-8 polymorphisms with tendinopathy of the primary posterior tibial tendon: a pilot study. Clinics 66(9):1641–1643

    Article  PubMed  PubMed Central  Google Scholar 

  77. Li D-Q, Luo L, Chen Z, Kim H-S, Song XJ, Pflugfelder SC (2006) JNK and ERK MAP kinases mediate induction of IL-1β, TNF-α and IL-8 following hyperosmolar stress in human limbal epithelial cells. Exp Eye Res 82(4):588–596

    Article  CAS  PubMed  Google Scholar 

  78. Moon CM, Jung S-A, Kim S-E, Song HJ, Jung Y, Ye BD et al (2015) Clinical factors and disease course related to diagnostic delay in Korean Crohn’s disease patients: results from the connect study. PLoS ONE 10(12):e0144390. doi:10.1371/journal.pone.0144390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sullivan SO’, Gilmer JF, Medina C (2015) Matrix metalloproteinases in inflammatory bowel disease: an update. Mediators Inflamm ID 964131:19 p

    Google Scholar 

  80. Pedersen G, Saermark T, Kirkegaard T, Brynskov J (2009) Spontaneous and cytokine induced expression and activity of matrix metalloproteinases in human colonic epithelium. Clin Exp Immunol 155(2):257–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. García MF, González-Reyes S, González LO et al (2010) Comparative study of the expression of metalloproteases and their inhibitors in different localizations within primary tumours and in metastatic lymph nodes of breast cancer. Int J Exp Pathol 91(4):324–334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Chang Y, Chiu Y, Cheng H et al (2015) Down-regulation of TIMP-1 inhibits cell migration, invasion, and metastatic colonization in lung adenocarcinoma. Tumor Biol 36:3957. doi:10.1007/s13277-015-3039-5

    Article  CAS  Google Scholar 

  83. Pereira AC, Dias do Carmo E, Dias da Silva MA, Blumer Rosa LE (2012) Matrix metalloproteinase gene polymorphisms and oral cancer. J Clin Exp Dent 4(5):e297–e301

    Google Scholar 

  84. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Reddy DN (2015) Role of the normal gut microbiota. World J Gastroenterol 21(29):8787–8803. doi:10.3748/wjg.v21.i29.8787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kusters JG, van Vliet AHM, Kuipers EJ (2006) Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 19(3):449–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nardone G, Compare D (2015) The human gastric microbiota: is it time to rethink the pathogenesis of stomach diseases? United Eur Gastroenterol J 3(3):255–260

    Article  CAS  Google Scholar 

  87. Wang Z-K, Yang Y-S (2013) Upper gastrointestinal microbiota and digestive diseases. World J Gastroenterol 19(10):1541–1550

    Article  PubMed  PubMed Central  Google Scholar 

  88. Wroblewski LE, Peek RM, Wilson KT (2010) Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin Microbiol Rev 23(4):713–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Salih BA (2009) Helicobacter pylori infection in developing countries: the burden for how long? Saudi J Gastroenterol 15(3):201–207

    Article  PubMed  PubMed Central  Google Scholar 

  90. Amsterdam KV, Van Vliet AHM, Kusters JG, Ende AVD (2006) Of microbe and man: determinants of H. pylori related diseases. Microbiol Rev 30(1):131–156

    Google Scholar 

  91. Fox JG, Wang TC (2007) Inflammation, atrophy and gastric cancer. J Clin Invest 117(1):60–69

    Article  CAS  PubMed  Google Scholar 

  92. Fitzgerald RC, Caldas C (2004) Clinical implications of E-cadherin associated hereditary diffuse gastric cancer. Gut 53(6):775–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hu B, El Hajj N, Sittler S, Lammert N, Barnes R, Meloni-Ehrig A (2012) Gastric cancer: classification, histology and application of molecular pathology. J Gastrointest Oncol 3(3):251–261

    PubMed  PubMed Central  Google Scholar 

  94. Alzahrani S, Lina TT, Gonzalez J, Pinchuk IV, Beswick EJ, Reyes VE (2014) Effect of Helicobacter pylori on gastric epithelial cells. World J Gastroenterol 20(36):12767–12780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Peek RM, Fiske C, Wilson KT (2010) Role of innate immunity in Helicobacter pylori-induced gastric malignancy. Physiol revi 90(3):831–858

    Article  CAS  Google Scholar 

  96. White JR, Winter JA, Robinson K (2015) Differential inflammatory response to Helicobacter pylori infection: etiology and clinical outcomes. J Inflamm Res 8:137–147

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Gööz M, Shaker M, Gööz P, Smolka AJ (2003) Interleukin 1β induces gastric epithelial cell matrix metalloproteinase secretion and activation during Helicobacter pylori infection. Gut 52(9):1250–1256

    Article  PubMed  PubMed Central  Google Scholar 

  98. Pillinger MH, Marjanovic N, Kim SY, Lee YC, Scher JU, Roper J et al (2007) Helicobacter pylori stimulates gastric epithelial cell MMP-1 secretion via CagA-dependent and -independent ERK activation. J Biol Chem 282(26):18722–18731

    Article  CAS  PubMed  Google Scholar 

  99. Oliveira MJ, Costa AC, Costa AM, Henriques L, Suriano G, Atherton JC (2006) Helicobacter pylori induces gastric epithelial cell invasion in a c Met and type IV secretion system-dependent manner. J Biol Chem 281(46):34888–34896

    Article  CAS  PubMed  Google Scholar 

  100. Kundu P, De R, Pal I, Mukhopadhyay AK, Saha DR, Swarnakar S (2011) Curcumin alleviates matrix metalloproteinase-3 and -9 activities during eradication of Helicobacter pylori infection in cultured cells and mice. PLoS ONE 6(1):e16306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Stein M, Ruggiero P, Rappuoli R, Bagnoli F (2013) Helicobacter pylori CagA: from pathogenic mechanisms to its use as an anti-cancer vaccine. Front Immunol 4:328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Jiang H, Zhou Y, Liao Q, Ouyang H (2014) Helicobacter pylori infection promotes the invasion and metastasis of gastric cancer through increasing the expression of matrix metalloproteinase-1 and matrix metalloproteinase-10. Exp Ther Med 8(3):769–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Costa AM, Ferreira RM, Pinto-Ribeiro I, Sougleri IS, Oliveira MJ, Carreto L et al (2016) Helicobacter pylori activates matrix metalloproteinase-10 in gastric epithelial cells via EGFR and ERK-mediated pathways. J Infect Dis 214(4)

    Google Scholar 

  104. Bebb JR, Letley DP, Thomas RJ, Aviles F, Collins HM, Watson SA et al (2003) Helicobacter pylori upregulates matrilysin (MMP-7) in epithelial cells in vivo and in vitro in a Cag dependent manner. Gut 52(10):1408–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nam YH, Ryu E, Lee D, Shim HJ, Lee YC, Lee ST (2011) Cag-A phosphorylation dependent MMP-9 expression in gastric epithelial cells. Helicobacter 16(4):276–283

    Article  CAS  PubMed  Google Scholar 

  106. Dethlefsen L, Mcfall-Ngai M, Relman DA (2007) An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449:811–818

    Article  CAS  PubMed  Google Scholar 

  107. Delgado S, Cabrera-Rubio R, Mira A, Suarez A, Mayo B (2013) Microbiological survey of the human gastric ecosystem using culturing an pyrosequencing methods. Microb Ecol 65:763–772

    Article  CAS  PubMed  Google Scholar 

  108. Wu WM, Yang YS, Peng LH (2014) Microbiota in the stomach: new insights. J Dig Dis 15:54–61

    Article  PubMed  Google Scholar 

  109. Sheh A, Fox JG (2013) The role of the gastrointestinal microbiome in Helicobacter pylori pathogenesis. Gut Microbes 4:505–531

    Article  PubMed  PubMed Central  Google Scholar 

  110. Bik EM, Eckburg PB, Gill SR, Nelson KE, Purdom EA, Francois F, Perez-Perez E, Blaser MJ, Relman DA (2006) Molecular analysis of bacterial microbiota in human stomach. Proc Natl Acad Sci U S A 103:732–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Andersson AF, Lindberg M, Jakobsson H, Bäckhed F, Nyrén P, Engstrand L (2008) Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS ONE 3(7):e2836

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Khosravi Y, Dieye Y, Poh BH, Ng CG, Loke MF, Goh KL, Vadivelu J (2014) Culturable bacterial microbiota of the stomach of helicobacter pylori positive and negative gastric disease patients. Sci World J 2014:610421

    Google Scholar 

  113. Eun CS, Kim BK, Han DS, Kim SY, Kim KM, Choi BY, Song KS, Kim YS, Kim JF (2014) Differences in gastric mucosal microbiota profiling in patients with chronic gastritis, intestinal metaplasia, and gastric cancer using pyrosequencing methods. Helicobacter 19:407–416

    Article  CAS  PubMed  Google Scholar 

  114. Correa P (1992) Human gastric carcinogenesis: a multistep and multifactorial process—first American cancer society award lecture on cancer epidemiology and prevention. Cancer Res 52:6735–6740

    CAS  PubMed  Google Scholar 

  115. Polk DB, Peek RM Jr (2010) Helicobacter pylori: gastric cancer and beyond. Nat Rev Caner 10:403–414

    Article  CAS  Google Scholar 

  116. Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S, Yamakido M, Taniyama K, Sasaki N, Schlemper RJ (2001) Helicobacter pylori infection and the development of gastric cancer. N Engl J Med 345:784–789

    Article  CAS  PubMed  Google Scholar 

  117. Aviles-Jimenez F, Vazquez-Jimenez F, Medrano-Guzman R, Mantilla A, Torres J (2014) Stomach microbiota composition varies between patients with non-atrophic gastritis and patients with intestinal type of gastric cancer. Sci Rep 4:4202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Vandenbroucke RE, Libert C (2014) Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat Rev Drug Discov 13:904–927

    Article  CAS  PubMed  Google Scholar 

  119. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8:221–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cathcart J, Pulkoski-Gross A, Cao J (2015) Targeting matrix metalloproteinases in cancer: bringing new life to old ideas. Genes Dis 2:26–34

    Google Scholar 

  121. Devy L, Dransfield DT (2011) New strategies for the next generation of matrix-metalloproteinase inhibitors: selectively targeting membrane-anchored MMPs with therapeutic antibodies. Biochem Res Int 2011:1–11

    Google Scholar 

  122. Remacle AG, Golubkov VS, Shiryaev SA, Dahl R, Stebbins JL, Chernov AV, Cheltsov AV, Pellecchia M, Strongin AY (2012) Novel MT1-MMP small-molecule inhibitors based on insights into hemopexin domain function in tumor growth. Cancer Res 72:2339–2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Coppola JM, Bhojani MS, Ross BD, Rehemtulla A (2008) A small-molecule furin inhibitor inhibits cancer cell motility and invasiveness. Neoplasia 10:363–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Albini A, Tosetti F, Li VW, Noonan DM, Li WW (2012) Cancer prevention by targeting angiogenesis. Nat Rev Clin Oncol 9:498–509

    Article  CAS  PubMed  Google Scholar 

  125. Dormán G, Cseh S, Hajdú I, Barna L, Kónya D, Kupai K, Kovács L, Ferdinandy P (2010) Matrix metalloproteinase inhibitors: a critical appraisal of design principles and proposed therapeutic utility. Drugs 70:949–964

    Article  PubMed  Google Scholar 

  126. García-Pardo A, Opdenakker G (2015) Nonproteolytic functions of matrix metalloproteinases in pathology and insights for the development of novel therapeutic inhibitors. Metalloproteinases Med 2:19–28

    Article  Google Scholar 

  127. Hu J, Van den Steen PE, Sang Q-XA, Opdenakker G (2007) Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat Rev Drug discov 6:480–498

    Article  CAS  PubMed  Google Scholar 

  128. Cathcart J, Pulkoski-Gross A, Cao J (2015) Targeting matrix metalloproteinases in cancer: bringing new life to old ideas. Genes Dis 2(1):26–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wojtowicz-Praga S, Low J, Marshall J, Ness E, Dickson R, Barter J, Sale M, McCann P, Moore J, Cole A (1996) Phase I trial of a novel matrix metalloproteinase inhibitor batimastat (BB-94) in patients with advanced cancer. Invest New Drugs 14:193–202

    Article  CAS  PubMed  Google Scholar 

  130. Lu C, Lee JJ, Komaki R et al (2010) Chemoradiotherapy with or without AE-941 in stage III non-small cell lung cancer: a randomized phase III trial. J Natl Cancer Inst 102(12):859–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bissett D, O’Byrne KJ, Von Pawel J, Gatzemeier U, Price A, Nicolson M, Mercier R, Mazabel E, Penning C, Zhang MH (2005) Phase III study of matrix metalloproteinase inhibitor prinomastat in non-small-cell lung cancer. J Clin Oncol 23:842–849

    Article  CAS  PubMed  Google Scholar 

  132. Leighl NB, Paz-Ares L, Douillard J-Y, Peschel C, Arnold A, Depierre A, Santoro A, Betticher DC, Gatzemeier U, Jassem J (2005) Randomized phase III study of matrix metalloproteinase inhibitor BMS-275291 in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: National Cancer Institute of Canada-Clinical Trials Group Study BR. 18. J Clin Oncol 23:2831–2839

    Article  CAS  PubMed  Google Scholar 

  133. Sparano JA, Bernardo P, Stephenson P, Gradishar WJ, Ingle JN, Zucker S, Davidson NE (2004) Randomized phase III trial of marimastat versus placebo in patients with metastatic breast cancer who have responding or stable disease after first-line chemotherapy: Eastern Cooperative Oncology Group Trial E2196. J Clin Oncol 22:4683–4690

    Article  CAS  PubMed  Google Scholar 

  134. Le Quement C, Guenon I, Gillon JY, Valenca S, Cayron-Elizondo V, Lagente V, Boichot E (2008) The selective MMP-12 inhibitor, AS111793 reduces airway inflammation in mice exposed to cigarette smoke. Br J Pharmacol 154:1206–1215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15(12):786–801. doi:10.1038/nrm3904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The financial assistance from CSIR network projects HUM (BSC 0119) and INDEPTH (BSC 0111) is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snehasikta Swarnakar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Swarnakar, S., Roy, A., Ghosh, S., Majumder, R., Paul, S. (2017). Gastric Pathology and Metalloproteinases. In: Chakraborti, S., Dhalla, N. (eds) Pathophysiological Aspects of Proteases. Springer, Singapore. https://doi.org/10.1007/978-981-10-6141-7_19

Download citation

Publish with us

Policies and ethics