Skip to main content

Caspases: Regulatory Mechanisms and Their Implications in Pathogenesis and Therapeutics

  • Chapter
  • First Online:
  • 719 Accesses

Abstract

Caspases (cysteine-aspartic proteases) belong to a family of endoproteases that regulate the cellular networks governing distinct physiological functions, which mainly include apoptotic cell death and inflammation. Few decades of research have generated a plethora of information on human caspases, their homologues, substrates and role in apoptosis. Programmed cell death (aka apoptosis) is an energy-dependent natural physiological process that is adapted by multicellular organisms for maintenance of tissue homeostasis. It involves a complex network of cellular proteases primarily caspases, which regulate selective removal of ageing and unwanted cells, thereby maintaining a precise balance between cell survival and death. Disruption of this stasis often leads to various pathophysiological conditions including inflammation, neurodegenerative disorders and cancer. Thus, being promoter of apoptosis, several caspases are prime targets of numerous research endeavours that aim to encounter and impede the advancement of these diseases. The main objective of this chapter is to provide a comprehensive overview of the structural and mechanistic aspects of caspases as well as the pathways involved in their activation and regulation. Besides, it also elaborates on the role of this protease family in different diseases and the current therapeutic strategies that are being devised to modulate their functions with desired characteristics.

This is a preview of subscription content, log in via an institution.

References

  1. Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326(Pt 1):1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Raff M (1998) Cell suicide for beginners. Nature 396(6707):119–122. doi:10.1038/24055

    Article  CAS  PubMed  Google Scholar 

  3. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267(5203):1456–1462

    Article  CAS  PubMed  Google Scholar 

  4. Nicholson DW (1996) ICE/CED3-like proteases as therapeutic targets for the control of inappropriate apoptosis. Nat Biotechnol 14(3):297–301. doi:10.1038/nbt0396-297

    Article  CAS  PubMed  Google Scholar 

  5. Clarke PG, Clarke S (1996) Nineteenth century research on naturally occurring cell death and related phenomena. Anat Embryol 193(2):81–99

    Article  CAS  Google Scholar 

  6. Philchenkov A (2004) Caspases: potential targets for regulating cell death. J Cell Mol Med 8(4):432–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281(5381):1312–1316

    Article  CAS  PubMed  Google Scholar 

  8. Sulston JE, Horvitz HR (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56(1):110–156

    Article  CAS  PubMed  Google Scholar 

  9. Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100(1):64–119

    Article  CAS  PubMed  Google Scholar 

  10. Ellis HM, Horvitz HR (1986) Genetic control of programmed cell death in the nematode C. elegans. Cell 44(6):817–829

    Article  CAS  PubMed  Google Scholar 

  11. Hengartner MO, Ellis RE, Horvitz HR (1992) Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356(6369):494–499. doi:10.1038/356494a0

    Article  CAS  PubMed  Google Scholar 

  12. Miura M, Zhu H, Rotello R, Hartwieg EA, Yuan J (1993) Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75(4):653–660

    Article  CAS  PubMed  Google Scholar 

  13. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90(3):405–413

    Article  CAS  PubMed  Google Scholar 

  14. Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13(15):1899–1911

    Article  CAS  PubMed  Google Scholar 

  15. Fritz JH, Ferrero RL, Philpott DJ, Girardin SE (2006) Nod-like proteins in immunity, inflammation and disease. Nat Immunol 7(12):1250–1257. doi:10.1038/ni1412

    Article  CAS  PubMed  Google Scholar 

  16. Gagliardini V, Fernandez PA, Lee RK, Drexler HC, Rotello RJ, Fishman MC, Yuan J (1994) Prevention of vertebrate neuronal death by the crmA gene. Science 263(5148):826–828

    Article  CAS  PubMed  Google Scholar 

  17. Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA et al (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376(6535):37–43. doi:10.1038/376037a0

    Article  CAS  PubMed  Google Scholar 

  18. Tschopp J, Martinon F, Burns K (2003) NALPs: a novel protein family involved in inflammation. Nat Rev Mol Cell Biol 4(2):95–104. doi:10.1038/nrm1019

    Article  CAS  PubMed  Google Scholar 

  19. Degterev A, Boyce M, Yuan J (2003) A decade of caspases. Oncogene 22(53):8543–8567. doi:10.1038/sj.onc.1207107

    Article  CAS  PubMed  Google Scholar 

  20. Lamkanfi M, Declercq W, Kalai M, Saelens X, Vandenabeele P (2002) Alice in caspase land. A phylogenetic analysis of caspases from worm to man. Cell Death Differ 9(4):358–361. doi:10.1038/sj/cdd/4400989

    Article  CAS  PubMed  Google Scholar 

  21. Nicholson DW, Thornberry NA (1997) Caspases: killer proteases. Trends Biochem Sci 22(8):299–306

    Article  CAS  PubMed  Google Scholar 

  22. Walker NP, Talanian RV, Brady KD, Dang LC, Bump NJ, Ferenz CR, Franklin S, Ghayur T, Hackett MC, Hammill LD et al (1994) Crystal structure of the cysteine protease interleukin-1 beta-converting enzyme: a (p20/p10)2 homodimer. Cell 78(2):343–352

    Article  CAS  PubMed  Google Scholar 

  23. Wilson KP, Black JA, Thomson JA, Kim EE, Griffith JP, Navia MA, Murcko MA, Chambers SP, Aldape RA, Raybuck SA et al (1994) Structure and mechanism of interleukin-1 beta converting enzyme. Nature 370(6487):270–275. doi:10.1038/370270a0

    Article  CAS  PubMed  Google Scholar 

  24. Rotonda J, Nicholson DW, Fazil KM, Gallant M, Gareau Y, Labelle M, Peterson EP, Rasper DM, Ruel R, Vaillancourt JP, Thornberry NA, Becker JW (1996) The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nat Struct Biol 3(7):619–625

    Article  CAS  PubMed  Google Scholar 

  25. Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia-Calvo M, Houtzager VM, Nordstrom PA, Roy S, Vaillancourt JP, Chapman KT, Nicholson DW (1997) A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 272(29):17907–17911

    Article  CAS  PubMed  Google Scholar 

  26. Stennicke HR, Salvesen GS (1999) Catalytic properties of the caspases. Cell Death Differ 6(11):1054–1059. doi:10.1038/sj.cdd.4400599

    Article  CAS  PubMed  Google Scholar 

  27. Miscione GP, Calvaresi M, Bottoni A (2010) Computational evidence for the catalytic mechanism of caspase-7. A DFT investigation. J Phys Chem B 114(13):4637–4645. doi:10.1021/jp908991z

    Article  CAS  PubMed  Google Scholar 

  28. Saleh M, Vaillancourt JP, Graham RK, Huyck M, Srinivasula SM, Alnemri ES, Steinberg MH, Nolan V, Baldwin CT, Hotchkiss RS, Buchman TG, Zehnbauer BA, Hayden MR, Farrer LA, Roy S, Nicholson DW (2004) Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 429(6987):75–79. doi:10.1038/nature02451

    Article  CAS  PubMed  Google Scholar 

  29. Kersse K, Verspurten J, Vanden Berghe T, Vandenabeele P (2011) The death-fold superfamily of homotypic interaction motifs. Trends Biochem Sci 36(10):541–552. doi:10.1016/j.tibs.2011.06.006

    Article  CAS  PubMed  Google Scholar 

  30. Vaughn DE, Rodriguez J, Lazebnik Y, Joshua-Tor L (1999) Crystal structure of Apaf-1 caspase recruitment domain: an alpha-helical Greek key fold for apoptotic signaling. J Mol Biol 293(3):439–447. doi:10.1006/jmbi.1999.3177

    Article  CAS  PubMed  Google Scholar 

  31. Milam SL, Clark AC (2009) Folding and assembly kinetics of procaspase-3. Protein Sci (A Publication of the Protein Society) 18(12):2500–2517. doi:10.1002/pro.259

    Article  CAS  Google Scholar 

  32. Pop C, Chen YR, Smith B, Bose K, Bobay B, Tripathy A, Franzen S, Clark AC (2001) Removal of the pro-domain does not affect the conformation of the procaspase-3 dimer. Biochemistry 40(47):14224–14235

    Article  CAS  PubMed  Google Scholar 

  33. Li J, Yuan J (2008) Caspases in apoptosis and beyond. Oncogene 27(48):6194–6206. doi:10.1038/onc.2008.297

    Article  CAS  PubMed  Google Scholar 

  34. Rano TA, Timkey T, Peterson EP, Rotonda J, Nicholson DW, Becker JW, Chapman KT, Thornberry NA (1997) A combinatorial approach for determining protease specificities: application to interleukin-1beta converting enzyme (ICE). Chem Biol 4(2):149–155

    Article  CAS  PubMed  Google Scholar 

  35. Kang SJ, Wang S, Hara H, Peterson EP, Namura S, Amin-Hanjani S, Huang Z, Srinivasan A, Tomaselli KJ, Thornberry NA, Moskowitz MA, Yuan J (2000) Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. J cell Biol 149(3):613–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhivotovsky B (2003) Caspases: the enzymes of death. Essays Biochem 39:25–40

    Article  CAS  PubMed  Google Scholar 

  37. Lassus P, Opitz-Araya X, Lazebnik Y (2002) Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297(5585):1352–1354. doi:10.1126/science.1074721

    Article  CAS  PubMed  Google Scholar 

  38. Paroni G, Henderson C, Schneider C, Brancolini C (2002) Caspase-2 can trigger cytochrome C release and apoptosis from the nucleus. J Biol Chem 277(17):15147–15161. doi:10.1074/jbc.M112338200

    Article  CAS  PubMed  Google Scholar 

  39. Robertson JD, Enoksson M, Suomela M, Zhivotovsky B, Orrenius S (2002) Caspase-2 acts upstream of mitochondria to promote cytochrome c release during etoposide-induced apoptosis. J Biol Chem 277(33):29803–29809. doi:10.1074/jbc.M204185200

    Article  CAS  PubMed  Google Scholar 

  40. Luthi AU, Martin SJ (2007) The CASBAH: a searchable database of caspase substrates. Cell Death Differ 14(4):641–650. doi:10.1038/sj.cdd.4402103

    Article  CAS  PubMed  Google Scholar 

  41. Rendl M, Ban J, Mrass P, Mayer C, Lengauer B, Eckhart L, Declerq W, Tschachler E (2002) Caspase-14 expression by epidermal keratinocytes is regulated by retinoids in a differentiation-associated manner. J Invest Dermatol 119(5):1150–1155. doi:10.1046/j.1523-1747.2002.19532.x

    Article  CAS  PubMed  Google Scholar 

  42. Masumoto J, Zhou W, Chen FF, Su F, Kuwada JY, Hidaka E, Katsuyama T, Sagara J, Taniguchi S, Ngo-Hazelett P, Postlethwait JH, Nunez G, Inohara N (2003) Caspy, a zebrafish caspase, activated by ASC oligomerization is required for pharyngeal arch development. J Biol Chem 278(6):4268–4276. doi:10.1074/jbc.M203944200

    Article  CAS  PubMed  Google Scholar 

  43. Eckhart L, Ballaun C, Uthman A, Kittel C, Stichenwirth M, Buchberger M, Fischer H, Sipos W, Tschachler E (2005) Identification and characterization of a novel mammalian caspase with proapoptotic activity. J Biol Chem 280(42):35077–35080. doi:10.1074/jbc.C500282200

    Article  CAS  PubMed  Google Scholar 

  44. Eckhart L, Ballaun C, Hermann M, VandeBerg JL, Sipos W, Uthman A, Fischer H, Tschachler E (2008) Identification of novel mammalian caspases reveals an important role of gene loss in shaping the human caspase repertoire. Mol Biol Evol 25(5):831–841. doi:10.1093/molbev/msn012

    Article  CAS  PubMed  Google Scholar 

  45. Fuentes-Prior P, Salvesen GS (2004) The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J 384(Pt 2):201–232. doi:10.1042/BJ20041142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mittl PR, Di Marco S, Krebs JF, Bai X, Karanewsky DS, Priestle JP, Tomaselli KJ, Grutter MG (1997) Structure of recombinant human CPP32 in complex with the tetrapeptide acetyl-Asp-Val-Ala-Asp fluoromethyl ketone. J Biol Chem 272(10):6539–6547

    Article  CAS  PubMed  Google Scholar 

  47. Renatus M, Stennicke HR, Scott FL, Liddington RC, Salvesen GS (2001) Dimer formation drives the activation of the cell death protease caspase 9. Proc Natl Acad Sci USA 98(25):14250–14255. doi:10.1073/pnas.231465798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shi Y (2002) Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 9(3):459–470

    Article  CAS  PubMed  Google Scholar 

  49. Hofmann K (1999) The modular nature of apoptotic signaling proteins. Cell Mol Life Sci (CMLS) 55(8–9):1113–1128

    Article  CAS  Google Scholar 

  50. Fairbrother WJ, Gordon NC, Humke EW, O’Rourke KM, Starovasnik MA, Yin JP, Dixit VM (2001) The PYRIN domain: a member of the death domain-fold superfamily. Protein Sci (A Publication of the Protein Society) 10(9):1911–1918. doi:10.1110/ps.13801

    Article  CAS  Google Scholar 

  51. Stennicke HR, Renatus M, Meldal M, Salvesen GS (2000) Internally quenched fluorescent peptide substrates disclose the subsite preferences of human caspases 1, 3, 6, 7 and 8. Biochem J 350(Pt 2):563–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Talanian RV, Quinlan C, Trautz S, Hackett MC, Mankovich JA, Banach D, Ghayur T, Brady KD, Wong WW (1997) Substrate specificities of caspase family proteases. J Biol Chem 272(15):9677–9682

    Article  CAS  PubMed  Google Scholar 

  53. Garcia-Calvo M, Peterson EP, Leiting B, Ruel R, Nicholson DW, Thornberry NA (1998) Inhibition of human caspases by peptide-based and macromolecular inhibitors. J Biol Chem 273(49):32608–32613

    Article  CAS  PubMed  Google Scholar 

  54. Thornberry NA (1997) The caspase family of cysteine proteases. Br Med Bull 53(3):478–490

    Article  CAS  PubMed  Google Scholar 

  55. Watt W, Koeplinger KA, Mildner AM, Heinrikson RL, Tomasselli AG, Watenpaugh KD (1999) The atomic-resolution structure of human caspase-8, a key activator of apoptosis. Structure 7(9):1135–1143

    Article  CAS  PubMed  Google Scholar 

  56. Blanchard H, Donepudi M, Tschopp M, Kodandapani L, Wu JC, Grutter MG (2000) Caspase-8 specificity probed at subsite S(4): crystal structure of the caspase-8-Z-DEVD-cho complex. J Mol Biol 302(1):9–16. doi:10.1006/jmbi.2000.4041

    Article  CAS  PubMed  Google Scholar 

  57. Schweizer A, Briand C, Grutter MG (2003) Crystal structure of caspase-2, apical initiator of the intrinsic apoptotic pathway. J Biol Chem 278(43):42441–42447. doi:10.1074/jbc.M304895200

    Article  CAS  PubMed  Google Scholar 

  58. Becker JW, Rotonda J, Soisson SM, Aspiotis R, Bayly C, Francoeur S, Gallant M, Garcia-Calvo M, Giroux A, Grimm E, Han Y, McKay D, Nicholson DW, Peterson E, Renaud J, Roy S, Thornberry N, Zamboni R (2004) Reducing the peptidyl features of caspase-3 inhibitors: a structural analysis. J Med Chem 47(10):2466–2474. doi:10.1021/jm0305523

    Article  CAS  PubMed  Google Scholar 

  59. Sleath PR, Hendrickson RC, Kronheim SR, March CJ, Black RA (1990) Substrate specificity of the protease that processes human interleukin-1 beta. J Biol Chem 265(24):14526–14528

    CAS  PubMed  Google Scholar 

  60. Cade C, Clark C (2015) Caspases—key players in apoptosis. In: Bose K (ed) Proteases in apoptosis: pathways, protocols and translational advances. Springer, pp 31–51. doi:10.1007/978-3-319-19497-4

    Book  Google Scholar 

  61. Sulpizi M, Rothlisberger U, Carloni P (2003) Molecular dynamics studies of caspase-3. Biophys J 84(4):2207–2215. doi:10.1016/S0006-3495(03)75026-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stennicke HR, Salvesen GS (1997) Biochemical characteristics of caspases-3, -6, -7, and -8. J Biol Chem 272(41):25719–25723

    Article  CAS  PubMed  Google Scholar 

  63. Singh N, Bose K (2015) Apoptosis: pathways, molecules and beyond. In: Bose K (ed) Proteases in apoptosis: pathways, protocols and translational advances. Springer, pp 1–30. doi:10.1007/978-3-319-19497-4

  64. Ashkenazi A (2002) Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2(6):420–430. doi:10.1038/nrc821

    Article  CAS  PubMed  Google Scholar 

  65. Dickens LS, Powley IR, Hughes MA, MacFarlane M (2012) The ‘complexities’ of life and death: death receptor signalling platforms. Exp Cell Res 318(11):1269–1277. doi:10.1016/j.yexcr.2012.04.005

    Article  CAS  PubMed  Google Scholar 

  66. Salvesen GS, Dixit VM (1999) Caspase activation: the induced-proximity model. Proc Natl Acad Sci USA 96(20):10964–10967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Logue SE, Martin SJ (2008) Caspase activation cascades in apoptosis. Biochem Soc Trans 36(Pt 1):1–9. doi:10.1042/BST0360001

    Article  CAS  PubMed  Google Scholar 

  68. Ferreira KS, Kreutz C, Macnelly S, Neubert K, Haber A, Bogyo M, Timmer J, Borner C (2012) Caspase-3 feeds back on caspase-8, Bid and XIAP in type I Fas signaling in primary mouse hepatocytes. Apoptosis Int J Prog Cell Death 17(5):503–515. doi:10.1007/s10495-011-0691-0

    Article  CAS  Google Scholar 

  69. Lamkanfi M, Kanneganti TD (2010) Caspase-7: a protease involved in apoptosis and inflammation. Int J Biochem Cell Biol 42(1):21–24. doi:10.1016/j.biocel.2009.09.013

    Article  CAS  PubMed  Google Scholar 

  70. Juo P, Kuo CJ, Yuan J, Blenis J (1998) Essential requirement for caspase-8/FLICE in the initiation of the Fas-induced apoptotic cascade. Curr Biol (CB) 8(18):1001–1008

    Article  CAS  Google Scholar 

  71. Varfolomeev EE, Schuchmann M, Luria V, Chiannilkulchai N, Beckmann JS, Mett IL, Rebrikov D, Brodianski VM, Kemper OC, Kollet O, Lapidot T, Soffer D, Sobe T, Avraham KB, Goncharov T, Holtmann H, Lonai P, Wallach D (1998) Targeted disruption of the mouse caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9(2):267–276

    Article  CAS  PubMed  Google Scholar 

  72. Deng Y, Lin Y, Wu X (2002) TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev 16(1):33–45. doi:10.1101/gad.949602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Verhagen AM, Silke J, Ekert PG, Pakusch M, Kaufmann H, Connolly LM, Day CL, Tikoo A, Burke R, Wrobel C, Moritz RL, Simpson RJ, Vaux DL (2002) HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem 277(1):445–454. doi:10.1074/jbc.M109891200

    Article  CAS  PubMed  Google Scholar 

  74. Cook AL, Frydenberg M, Haynes JM (2002) Protein kinase G activation of K(ATP) channels in human-cultured prostatic stromal cells. Cell Signal 14(12):1023–1029

    Article  CAS  PubMed  Google Scholar 

  75. Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114(2):181–190

    Article  CAS  PubMed  Google Scholar 

  76. Newton K, Dixit VM (2012) Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol 4(3). doi:10.1101/cshperspect.a006049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Christofferson DE, Yuan J (2010) Necroptosis as an alternative form of programmed cell death. Curr Opin Cell Biol 22(2):263–268. doi:10.1016/j.ceb.2009.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Declercq W, Vanden Berghe T, Vandenabeele P (2009) RIP kinases at the crossroads of cell death and survival. Cell 138(2):229–232. doi:10.1016/j.cell.2009.07.006

    Article  CAS  PubMed  Google Scholar 

  79. Micheau O, Lens S, Gaide O, Alevizopoulos K, Tschopp J (2001) NF-kappaB signals induce the expression of c-FLIP. Mol Cell Biol 21(16):5299–5305. doi:10.1128/MCB.21.16.5299-5305.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Micheau O, Thome M, Schneider P, Holler N, Tschopp J, Nicholson DW, Briand C, Grutter MG (2002) The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J Biol Chem 277(47):45162–45171. doi:10.1074/jbc.M206882200

    Article  CAS  PubMed  Google Scholar 

  81. Pop C, Oberst A, Drag M, Van Raam BJ, Riedl SJ, Green DR, Salvesen GS (2011) FLIP(L) induces caspase 8 activity in the absence of interdomain caspase 8 cleavage and alters substrate specificity. Biochem J 433(3):447–457. doi:10.1042/BJ20101738

    Article  CAS  PubMed  Google Scholar 

  82. Geserick P, Hupe M, Moulin M, Wong WW, Feoktistova M, Kellert B, Gollnick H, Silke J, Leverkus M (2009) Cellular IAPs inhibit a cryptic CD95-induced cell death by limiting RIP1 kinase recruitment. J cell Biol 187(7):1037–1054. doi:10.1083/jcb.200904158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17(6):1675–1687. doi:10.1093/emboj/17.6.1675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Samraj AK, Keil E, Ueffing N, Schulze-Osthoff K, Schmitz I (2006) Loss of caspase-9 provides genetic evidence for the type I/II concept of CD95-mediated apoptosis. J Biol Chem 281(40):29652–29659. doi:10.1074/jbc.M603487200

    Article  CAS  PubMed  Google Scholar 

  85. Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94(4):491–501

    Article  CAS  PubMed  Google Scholar 

  86. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94(4):481–490

    Article  CAS  PubMed  Google Scholar 

  87. Ozoren N, El-Deiry WS (2002) Defining characteristics of types I and II apoptotic cells in response to TRAIL. Neoplasia 4(6):551–557. doi:10.1038/sj.neo.7900270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jost PJ, Grabow S, Gray D, McKenzie MD, Nachbur U, Huang DC, Bouillet P, Thomas HE, Borner C, Silke J, Strasser A, Kaufmann T (2009) XIAP discriminates between type I and type II FAS-induced apoptosis. Nature 460(7258):1035–1039. doi:10.1038/nature08229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Spencer SL, Gaudet S, Albeck JG, Burke JM, Sorger PK (2009) Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459(7245):428–432. doi:10.1038/nature08012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Green DR, Llambi F (2015) Cell death signaling. Cold Spring Harb Perspect Biol 7(12). doi:10.1101/cshperspect.a006080

  91. Eskes R, Desagher S, Antonsson B, Martinou JC (2000) Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 20(3):929–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schlesinger PH (2000) Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 7(12):1166–1173. doi:10.1038/sj.cdd.4400783

    Article  CAS  PubMed  Google Scholar 

  93. Dewson G, Kratina T, Sim HW, Puthalakath H, Adams JM, Colman PM, Kluck RM (2008) To trigger apoptosis, Bak exposes its BH3 domain and homodimerizes via BH3:groove interactions. Mol Cell 30(3):369–380. doi:10.1016/j.molcel.2008.04.005

    Article  CAS  PubMed  Google Scholar 

  94. Dewson G, Kratina T, Czabotar P, Day CL, Adams JM, Kluck RM (2009) Bak activation for apoptosis involves oligomerization of dimers via their alpha6 helices. Mol Cell 36(4):696–703. doi:10.1016/j.molcel.2009.11.008

    Article  CAS  PubMed  Google Scholar 

  95. Chipuk JE, Green DR (2008) How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 18(4):157–164. doi:10.1016/j.tcb.2008.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kim HE, Du F, Fang M, Wang X (2005) Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent nucleotide exchange on Apaf-1. Proc Natl Acad Sci U S A 102(49):17545–17550. doi:10.1073/pnas.0507900102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Qin H, Srinivasula SM, Wu G, Fernandes-Alnemri T, Alnemri ES, Shi Y (1999) Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1. Nature 399(6736):549–557. doi:10.1038/21124

    Article  CAS  PubMed  Google Scholar 

  98. Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW (2002) Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 9(2):423–432

    Article  CAS  PubMed  Google Scholar 

  99. Yu X, Acehan D, Menetret JF, Booth CR, Ludtke SJ, Riedl SJ, Shi Y, Wang X, Akey CW (2005) A structure of the human apoptosome at 12.8 A resolution provides insights into this cell death platform. Structure 13(11):1725–1735. doi:10.1016/j.str.2005.09.006

    Article  CAS  PubMed  Google Scholar 

  100. Malladi S, Challa-Malladi M, Fearnhead HO, Bratton SB (2009) The Apaf-1*procaspase-9 apoptosome complex functions as a proteolytic-based molecular timer. EMBO J 28(13):1916–1925. doi:10.1038/emboj.2009.152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rodriguez J, Lazebnik Y (1999) Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev 13(24):3179–3184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bratton SB, Walker G, Srinivasula SM, Sun XM, Butterworth M, Alnemri ES, Cohen GM (2001) Recruitment, activation and retention of caspases-9 and -3 by Apaf-1 apoptosome and associated XIAP complexes. EMBO J 20(5):998–1009. doi:10.1093/emboj/20.5.998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bergeron L, Perez GI, Macdonald G, Shi L, Sun Y, Jurisicova A, Varmuza S, Latham KE, Flaws JA, Salter JC, Hara H, Moskowitz MA, Li E, Greenberg A, Tilly JL, Yuan J (1998) Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev 12(9):1304–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nutt LK, Margolis SS, Jensen M, Herman CE, Dunphy WG, Rathmell JC, Kornbluth S (2005) Metabolic regulation of oocyte cell death through the CaMKII-mediated phosphorylation of caspase-2. Cell 123(1):89–103. doi:10.1016/j.cell.2005.07.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Troy CM, Stefanis L, Greene LA, Shelanski ML (1997) Nedd2 is required for apoptosis after trophic factor withdrawal, but not superoxide dismutase (SOD1) downregulation, in sympathetic neurons and PC12 cells. J Neurosci (Official Journal of the Society for Neuroscience) 17(6):1911–1918

    Article  CAS  Google Scholar 

  106. Troy CM, Rabacchi SA, Friedman WJ, Frappier TF, Brown K, Shelanski ML (2000) Caspase-2 mediates neuronal cell death induced by beta-amyloid. J Neurosci (The Official Journal of the Society for Neuroscience) 20(4):1386–1392

    Article  CAS  Google Scholar 

  107. Troy CM, Rabacchi SA, Hohl JB, Angelastro JM, Greene LA, Shelanski ML (2001) Death in the balance: alternative participation of the caspase-2 and -9 pathways in neuronal death induced by nerve growth factor deprivation. J Neurosci (The Official Journal of the Society for Neuroscience) 21(14):5007–5016

    Article  CAS  Google Scholar 

  108. McIlwain DR, Berger T, Mak TW (2013) Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 5(4):a008656. doi:10.1101/cshperspect.a008656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tinel A, Janssens S, Lippens S, Cuenin S, Logette E, Jaccard B, Quadroni M, Tschopp J (2007) Autoproteolysis of PIDD marks the bifurcation between pro-death caspase-2 and pro-survival NF-kappaB pathway. EMBO J 26(1):197–208. doi:10.1038/sj.emboj.7601473

    Article  CAS  PubMed  Google Scholar 

  110. Janssens S, Tinel A, Lippens S, Tschopp J (2005) PIDD mediates NF-kappaB activation in response to DNA damage. Cell 123(6):1079–1092. doi:10.1016/j.cell.2005.09.036

    Article  CAS  PubMed  Google Scholar 

  111. Tinel A, Tschopp J (2004) The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 304(5672):843–846. doi:10.1126/science.1095432

    Article  CAS  PubMed  Google Scholar 

  112. Park HH, Wu H (2006) Crystal structure of RAIDD death domain implicates potential mechanism of PIDDosome assembly. J Mol Biol 357(2):358–364. doi:10.1016/j.jmb.2005.12.082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Park HH, Logette E, Raunser S, Cuenin S, Walz T, Tschopp J, Wu H (2007) Death domain assembly mechanism revealed by crystal structure of the oligomeric PIDDosome core complex. Cell 128(3):533–546. doi:10.1016/j.cell.2007.01.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sidi S, Sanda T, Kennedy RD, Hagen AT, Jette CA, Hoffmans R, Pascual J, Imamura S, Kishi S, Amatruda JF, Kanki JP, Green DR, D’Andrea AA, Look AT (2008) Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2, and caspase-3. Cell 133(5):864–877. doi:10.1016/j.cell.2008.03.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Olsson M, Vakifahmetoglu H, Abruzzo PM, Hogstrand K, Grandien A, Zhivotovsky B (2009) DISC-mediated activation of caspase-2 in DNA damage-induced apoptosis. Oncogene 28(18):1949–1959. doi:10.1038/onc.2009.36

    Article  CAS  PubMed  Google Scholar 

  116. Shi M, Vivian CJ, Lee KJ, Ge C, Morotomi-Yano K, Manzl C, Bock F, Sato S, Tomomori-Sato C, Zhu R, Haug JS, Swanson SK, Washburn MP, Chen DJ, Chen BP, Villunger A, Florens L, Du C (2009) DNA-PKcs-PIDDosome: a nuclear caspase-2-activating complex with role in G2/M checkpoint maintenance. Cell 136(3):508–520. doi:10.1016/j.cell.2008.12.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ho LH, Taylor R, Dorstyn L, Cakouros D, Bouillet P, Kumar S (2009) A tumor suppressor function for caspase-2. Proc Natl Acad Sci U S A 106(13):5336–5341. doi:10.1073/pnas.0811928106

    Article  PubMed  PubMed Central  Google Scholar 

  118. Manzl C, Krumschnabel G, Bock F, Sohm B, Labi V, Baumgartner F, Logette E, Tschopp J, Villunger A (2009) Caspase-2 activation in the absence of PIDDosome formation. J Cell Biol 185(2):291–303. doi:10.1083/jcb.200811105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ribe EM, Jean YY, Goldstein RL, Manzl C, Stefanis L, Villunger A, Troy CM (2012) Neuronal caspase 2 activity and function requires RAIDD, but not PIDD. Biochem J 444(3):591–599. doi:10.1042/BJ20111588

    Article  CAS  PubMed  Google Scholar 

  120. Martinon F, Tschopp J (2004) Inflammatory caspases: linking an intracellular innate immune system to auto inflammatory diseases. Cell 117(5):561–574. doi:10.1016/j.cell.2004.05.004

    Article  CAS  PubMed  Google Scholar 

  121. Franchi L, Munoz-Planillo R, Nunez G (2012) Sensing and reacting to microbes through the inflammasomes. Nat Immunol 13(4):325–332. doi:10.1038/ni.2231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zamboni DS, Kobayashi KS, Kohlsdorf T, Ogura Y, Long EM, Vance RE, Kuida K, Mariathasan S, Dixit VM, Flavell RA, Dietrich WF, Roy CR (2006) The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of legionella pneumophila infection. Nat Immunol 7(3):318–325. doi:10.1038/ni1305

    Article  CAS  PubMed  Google Scholar 

  123. Vinzing M, Eitel J, Lippmann J, Hocke AC, Zahlten J, Slevogt H, N’Guessan PD, Gunther S, Schmeck B, Hippenstiel S, Flieger A, Suttorp N, Opitz B (2008) NAIP and Ipaf control Legionella pneumophila replication in human cells. J Immunol 180(10):6808–6815

    Article  CAS  PubMed  Google Scholar 

  124. Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP, Roose-Girma M, Erickson S, Dixit VM (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430(6996):213–218. doi:10.1038/nature02664

    Article  CAS  PubMed  Google Scholar 

  125. Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM, Dixit VM (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440(7081):228–232. doi:10.1038/nature04515

    Article  CAS  PubMed  Google Scholar 

  126. Nakagawa T, Yuan J (2000) Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150(4):887–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Schotte P, Van Criekinge W, Van de Craen M, Van Loo G, Desmedt M, Grooten J, Cornelissen M, De Ridder L, Vandekerckhove J, Fiers W, Vandenabeele P, Beyaert R (1998) Cathepsin B-mediated activation of the proinflammatory caspase-11. Biochem Biophys Res Commun 251(1):379–387. doi:10.1006/bbrc.1998.9425

    Article  CAS  PubMed  Google Scholar 

  128. Vancompernolle K, Van Herreweghe F, Pynaert G, Van de Craen M, De Vos K, Totty N, Sterling A, Fiers W, Vandenabeele P, Grooten J (1998) Atractyloside-induced release of cathepsin B, a protease with caspase-processing activity. FEBS Lett 438(3):150–158

    Article  CAS  PubMed  Google Scholar 

  129. Darmon AJ, Nicholson DW, Bleackley RC (1995) Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B. Nature 377(6548):446–448. doi:10.1038/377446a0

    Article  CAS  PubMed  Google Scholar 

  130. Orth K, O’Rourke K, Salvesen GS, Dixit VM (1996) Molecular ordering of apoptotic mammalian CED-3/ICE-like proteases. J Biol Chem 271(35):20977–20980

    Article  CAS  PubMed  Google Scholar 

  131. Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weidner JR, Aunins J et al (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356(6372):768–774. doi:10.1038/356768a0

    Article  CAS  PubMed  Google Scholar 

  132. Ramage P, Cheneval D, Chvei M, Graff P, Hemmig R, Heng R, Kocher HP, Mackenzie A, Memmert K, Revesz L et al (1995) Expression, refolding, and autocatalytic proteolytic processing of the interleukin-1 beta-converting enzyme precursor. J Biol Chem 270(16):9378–9383

    Article  CAS  PubMed  Google Scholar 

  133. Yamin TT, Ayala JM, Miller DK (1996) Activation of the native 45-kDa precursor form of interleukin-1-converting enzyme. J Biol Chem 271(22):13273–13282

    Article  CAS  PubMed  Google Scholar 

  134. Jacobson M, McCarthy N (2002) Apoptosis. The molecular biology of programmed cell death. Oxford University Press, UK

    Google Scholar 

  135. Brentnall M, Rodriguez-Menocal L, De Guevara RL, Cepero E, Boise LH (2013) Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol 14:32. doi:10.1186/1471-2121-14-32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Cowling V, Downward J (2002) Caspase-6 is the direct activator of caspase-8 in the cytochrome c-induced apoptosis pathway: absolute requirement for removal of caspase-6 prodomain. Cell Death Differ 9(10):1046–1056. doi:10.1038/sj.cdd.4401065

    Article  CAS  PubMed  Google Scholar 

  137. Chai J, Wu Q, Shiozaki E, Srinivasula SM, Alnemri ES, Shi Y (2001) Crystal structure of a procaspase-7 zymogen: mechanisms of activation and substrate binding. Cell 107(3):399–407

    Article  CAS  PubMed  Google Scholar 

  138. Riedl SJ, Fuentes-Prior P, Renatus M, Kairies N, Krapp S, Huber R, Salvesen GS, Bode W (2001) Structural basis for the activation of human procaspase-7. Proc Natl Acad Sci U S A 98(26):14790–14795. doi:10.1073/pnas.221580098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Muzio M, Stockwell BR, Stennicke HR, Salvesen GS, Dixit VM (1998) An induced proximity model for caspase-8 activation. J Biol Chem 273(5):2926–2930

    Article  CAS  PubMed  Google Scholar 

  140. Boatright KM, Renatus M, Scott FL, Sperandio S, Shin H, Pedersen IM, Ricci JE, Edris WA, Sutherlin DP, Green DR, Salvesen GS (2003) A unified model for apical caspase activation. Mol Cell 11(2):529–541

    Article  CAS  PubMed  Google Scholar 

  141. Chang DW, Xing Z, Pan Y, Algeciras-Schimnich A, Barnhart BC, Yaish-Ohad S, Peter ME, Yang X (2002) c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J 21(14):3704–3714. doi:10.1093/emboj/cdf356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer JL, Schroter M, Burns K, Mattmann C, Rimoldi D, French LE, Tschopp J (1997) Inhibition of death receptor signals by cellular FLIP. Nature 388(6638):190–195. doi:10.1038/40657

    Article  CAS  PubMed  Google Scholar 

  143. Kirchhoff S, Muller WW, Li-Weber M, Krammer PH (2000) Up-regulation of c-FLIPshort and reduction of activation-induced cell death in CD28-costimulated human T cells. Eur J Immunol 30(10):2765–2774. doi:10.1002/1521-4141(200010)30:10<2765:AID-IMMU2765>3.0.CO;2-W

    Article  CAS  PubMed  Google Scholar 

  144. Shiozaki EN, Chai J, Shi Y (2002) Oligomerization and activation of caspase-9, induced by Apaf-1 CARD. Proc Natl Acad Sci U S A 99(7):4197–4202. doi:10.1073/pnas.072544399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10(2):417–426

    Article  CAS  PubMed  Google Scholar 

  146. Van de Craen M, Declercq W, Van den brande I, Fiers W, Vandenabeele P (1999) The proteolytic procaspase activation network: an in vitro analysis. Cell Death Differ 6 (11):1117–1124. doi:10.1038/sj.cdd.4400589

    Article  CAS  Google Scholar 

  147. Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang HG, Reed JC, Nicholson DW, Alnemri ES, Green DR, Martin SJ (1999) Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol 144(2):281–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Srinivasula SM, Hegde R, Saleh A, Datta P, Shiozaki E, Chai J, Lee RA, Robbins PD, Fernandes-Alnemri T, Shi Y, Alnemri ES (2001) A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410(6824):112–116. doi:10.1038/35065125

    Article  CAS  PubMed  Google Scholar 

  149. Lockshin RA (1969) Programmed cell death. Activation of lysis by a mechanism involving the synthesis of protein. J Insect Physiol 15(9):1505–1516

    Article  CAS  PubMed  Google Scholar 

  150. Wang S, Miura M, Jung Y, Zhu H, Gagliardini V, Shi L, Greenberg AH, Yuan J (1996) Identification and characterization of Ich-3, a member of the interleukin-1beta converting enzyme (ICE)/Ced-3 family and an upstream regulator of ICE. J Biol Chem 271(34):20580–20587

    Article  CAS  PubMed  Google Scholar 

  151. Lin XY, Choi MS, Porter AG (2000) Expression analysis of the human caspase-1 subfamily reveals specific regulation of the CASP5 gene by lipopolysaccharide and interferon-gamma. J Biol Chem 275(51):39920–39926. doi:10.1074/jbc.M007255200

    Article  CAS  PubMed  Google Scholar 

  152. Bian ZM, Elner SG, Khanna H, Murga-Zamalloa CA, Patil S, Elner VM (2011) Expression and functional roles of caspase-5 in inflammatory responses of human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 52(12):8646–8656. doi:10.1167/iovs.11-7570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Krumschnabel G, Manzl C, Villunger A (2009) Caspase-2: killer, savior and safeguard–emerging versatile roles for an ill-defined caspase. Oncogene 28(35):3093–3096. doi:10.1038/onc.2009.173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Baptiste-Okoh N, Barsotti AM, Prives C (2008) Caspase 2 is both required for p53-mediated apoptosis and downregulated by p53 in a p21-dependent manner. Cell Cycle 7(9):1133–1138. doi:10.4161/cc.7.9.5805

    Article  CAS  PubMed  Google Scholar 

  155. Winkler C, Doller A, Imre G, Badawi A, Schmid T, Schulz S, Steinmeyer N, Pfeilschifter J, Rajalingam K, Eberhardt W (2014) Attenuation of the ELAV1-like protein HuR sensitizes adenocarcinoma cells to the intrinsic apoptotic pathway by increasing the translation of caspase-2L. Cell Death Dis 5:e1321. doi:10.1038/cddis.2014.279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wang QE, Han C, Zhang B, Sabapathy K, Wani AA (2012) Nucleotide excision repair factor XPC enhances DNA damage-induced apoptosis by downregulating the antiapoptotic short isoform of caspase-2. Cancer Res 72(3):666–675. doi:10.1158/0008-5472.CAN-11-2774

    Article  CAS  PubMed  Google Scholar 

  157. Seol DW, Billiar TR (1999) A caspase-9 variant missing the catalytic site is an endogenous inhibitor of apoptosis. J Biol Chem 274(4):2072–2076

    Article  CAS  PubMed  Google Scholar 

  158. Srinivasula SM, Ahmad M, Guo Y, Zhan Y, Lazebnik Y, Fernandes-Alnemri T, Alnemri ES (1999) Identification of an endogenous dominant-negative short isoform of caspase-9 that can regulate apoptosis. Cancer Res 59(5):999–1002

    CAS  PubMed  Google Scholar 

  159. Shultz JC, Goehe RW, Wijesinghe DS, Murudkar C, Hawkins AJ, Shay JW, Minna JD, Chalfant CE (2010) Alternative splicing of caspase 9 is modulated by the phosphoinositide 3-kinase/Akt pathway via phosphorylation of SRp30a. Cancer Res 70(22):9185–9196. doi:10.1158/0008-5472.CAN-10-1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Elvitigala DA, Whang I, Jung HB, Lim BS, Nam BH, Lee J (2015) Molecular delineation of a caspase 10 homolog from black rockfish (Sebastes schlegelii) and its transcriptional regulation in response to pathogenic stress. Gene 570(2):288–294. doi:10.1016/j.gene.2015.05.068

    Article  CAS  PubMed  Google Scholar 

  161. Gibellini D, Re MC, Ponti C, Vitone F, Bon I, Fabbri G, Grazia Di Iasio M, Zauli G (2005) HIV-1 Tat protein concomitantly down-regulates apical caspase-10 and up-regulates c-FLIP in lymphoid T cells: a potential molecular mechanism to escape TRAIL cytotoxicity. J Cell Physiol 203(3):547–556. doi:10.1002/jcp.20252

    Article  CAS  PubMed  Google Scholar 

  162. Eckhart L, Ban J, Fischer H, Tschachler E (2000) Caspase-14: analysis of gene structure and mRNA expression during keratinocyte differentiation. Biochem Biophys Res Commun 277(3):655–659. doi:10.1006/bbrc.2000.3698

    Article  CAS  PubMed  Google Scholar 

  163. Nahle Z, Polakoff J, Davuluri RV, McCurrach ME, Jacobson MD, Narita M, Zhang MQ, Lazebnik Y, Bar-Sagi D, Lowe SW (2002) Direct coupling of the cell cycle and cell death machinery by E2F. Nat Cell Biol 4(11):859–864. doi:10.1038/ncb868

    Article  CAS  PubMed  Google Scholar 

  164. Parrish AB, Freel CD, Kornbluth S (2013) Cellular mechanisms controlling caspase activation and function. Cold Spring Harbor Perspect Biol 5(6). doi:10.1101/cshperspect.a008672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Hammerman PS, Fox CJ, Thompson CB (2004) Beginnings of a signal-transduction pathway for bioenergetic control of cell survival. Trends Biochem Sci 29(11):586–592. doi:10.1016/j.tibs.2004.09.008

    Article  CAS  PubMed  Google Scholar 

  166. Nutt LK, Buchakjian MR, Gan E, Darbandi R, Yoon SY, Wu JQ, Miyamoto YJ, Gibbons JA, Andersen JL, Freel CD, Tang W, He C, Kurokawa M, Wang Y, Margolis SS, Fissore RA, Kornbluth S (2009) Metabolic control of oocyte apoptosis mediated by 14-3-3zeta-regulated dephosphorylation of caspase-2. Dev Cell 16(6):856–866. doi:10.1016/j.devcel.2009.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Yi CH, Sogah DK, Boyce M, Degterev A, Christofferson DE, Yuan J (2007) A genome-wide RNAi screen reveals multiple regulators of caspase activation. J Cell Biol 179(4):619–626. doi:10.1083/jcb.200708090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Yang CS, Thomenius MJ, Gan EC, Tang W, Freel CD, Merritt TJ, Nutt LK, Kornbluth S (2010) Metabolic regulation of drosophila apoptosis through inhibitory phosphorylation of Dronc. EMBO J 29(18):3196–3207. doi:10.1038/emboj.2010.191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Li J, Billiar TR, Talanian RV, Kim YM (1997) Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem Biophys Res Commun 240(2):419–424. doi:10.1006/bbrc.1997.7672

    Article  CAS  PubMed  Google Scholar 

  170. Mannick JB, Schonhoff C, Papeta N, Ghafourifar P, Szibor M, Fang K, Gaston B (2001) S-Nitrosylation of mitochondrial caspases. J Cell Biol 154(6):1111–1116. doi:10.1083/jcb.200104008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Jiang ZL, Fletcher NM, Diamond MP, Abu-Soud HM, Saed GM (2009) S-nitrosylation of caspase-3 is the mechanism by which adhesion fibroblasts manifest lower apoptosis. Wound Repair and Regeneration (Official Publication of the Wound Healing Society [and] the European Tissue Repair Society) 17(2):224–229. doi:10.1111/j.1524-475X.2009.00459.x

  172. Mitchell DA, Marletta MA (2005) Thioredoxin catalyzes the S-nitrosation of the caspase-3 active site cysteine. Nat Chem Biol 1(3):154–158. doi:10.1038/nchembio720

    Article  CAS  PubMed  Google Scholar 

  173. Tsang AH, Lee YI, Ko HS, Savitt JM, Pletnikova O, Troncoso JC, Dawson VL, Dawson TM, Chung KK (2009) S-nitrosylation of XIAP compromises neuronal survival in Parkinson’s disease. Proc Natl Acad Sci U S A 106(12):4900–4905. doi:10.1073/pnas.0810595106

    Article  PubMed  PubMed Central  Google Scholar 

  174. Wu W, Wan OW, Chung KK (2015) S-nitrosylation of XIAP at Cys 213 of BIR2 domain impairs XIAP’s anti-caspase 3 activity and anti-apoptotic function. Apoptosis Int J Prog Cell Death 20(4):491–499. doi:10.1007/s10495-015-1087-3

    Article  CAS  Google Scholar 

  175. Zhang D, Zhao N, Ma B, Wang Y, Zhang G, Yan X, Hu S, Xu T (2016) Procaspase-9 induces its cleavage by transnitrosylating XIAP via the Thioredoxin system during cerebral ischemia-reperfusion in rats. Sci R 6:24203. doi:10.1038/srep24203

    Article  CAS  Google Scholar 

  176. Kim YM, Kim TH, Chung HT, Talanian RV, Yin XM, Billiar TR (2000) Nitric oxide prevents tumor necrosis factor alpha-induced rat hepatocyte apoptosis by the interruption of mitochondrial apoptotic signaling through S-nitrosylation of caspase-8. Hepatology 32(4 Pt 1):770–778. doi:10.1053/jhep.2000.18291

    Article  CAS  PubMed  Google Scholar 

  177. Torok NJ, Higuchi H, Bronk S, Gores GJ (2002) Nitric oxide inhibits apoptosis downstream of cytochrome C release by nitrosylating caspase 9. Cancer Res 62(6):1648–1653

    CAS  PubMed  Google Scholar 

  178. Yin XH, Yan JZ, Hou XY, Wu SL, Zhang GY (2013) Neuroprotection of S-nitrosoglutathione against ischemic injury by down-regulating Fas S-nitrosylation and downstream signaling. Neuroscience 248:290–298. doi:10.1016/j.neuroscience.2013.06.012

    Article  CAS  PubMed  Google Scholar 

  179. Kim YM, Kim JH, Kwon HM, Lee DH, Won MH, Kwon YG, Kim YM (2013) Korean Red Ginseng protects endothelial cells from serum-deprived apoptosis by regulating Bcl-2 family protein dynamics and caspase S-nitrosylation. J Ginseng Res 37(4):413–424. doi:10.5142/jgr.2013.37.413

    Article  PubMed  PubMed Central  Google Scholar 

  180. Saligrama PT, Fortner KA, Secinaro MA, Collins CC, Russell JQ, Budd RC (2014) IL-15 maintains T-cell survival via S-nitrosylation-mediated inhibition of caspase-3. Cell Death Differ 21(6):904–914. doi:10.1038/cdd.2014.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Li M, Wang AJ, Xu JX (2008) Redox state of cytochrome c regulates cellular ROS and caspase cascade in permeablized cell model. Protein Pept Lett 15(2):200–205

    Article  CAS  PubMed  Google Scholar 

  182. Resch U, Schichl YM, Sattler S, de Martin R (2008) XIAP regulates intracellular ROS by enhancing antioxidant gene expression. Biochem Biophys Res Commun 375(1):156–161. doi:10.1016/j.bbrc.2008.07.142

    Article  CAS  PubMed  Google Scholar 

  183. Girish KS, Paul M, Thushara RM, Hemshekhar M, Shanmuga Sundaram M, Rangappa KS, Kemparaju K (2013) Melatonin elevates apoptosis in human platelets via ROS mediated mitochondrial damage. Biochem Biophys Res Commun 438(1):198–204. doi:10.1016/j.bbrc.2013.07.053

    Article  CAS  PubMed  Google Scholar 

  184. Lupfer CR, Anand PK, Liu Z, Stokes KL, Vogel P, Lamkanfi M, Kanneganti TD (2014) Reactive oxygen species regulate caspase-11 expression and activation of the non-canonical NLRP3 inflammasome during enteric pathogen infection. PLoS Pathog 10(9):e1004410. doi:10.1371/journal.ppat.1004410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Shalini S, Puccini J, Wilson CH, Finnie J, Dorstyn L, Kumar S (2015) Caspase-2 protects against oxidative stress in vivo. Oncogene 34(38):4995–5002. doi:10.1038/onc.2014.413

    Article  CAS  PubMed  Google Scholar 

  186. Ives A, Nomura J, Martinon F, Roger T, LeRoy D, Miner JN, Simon G, Busso N, So A (2015) Xanthine oxidoreductase regulates macrophage IL1beta secretion upon NLRP3 inflammasome activation. Nat Commun 6:6555. doi:10.1038/ncomms7555

    Article  CAS  PubMed  Google Scholar 

  187. Jung SS, Moon JS, Xu JF, Ifedigbo E, Ryter SW, Choi AM, Nakahira K (2015) Carbon monoxide negatively regulates NLRP3 inflammasome activation in macrophages. Am J Physiol Lung Cell Mol Physiol 308(10):L1058–L1067. doi:10.1152/ajplung.00400.2014

    Article  PubMed  PubMed Central  Google Scholar 

  188. Liu X, Zhang X, Ding Y, Zhou W, Tao L, Hu R (2016) Nuclear factor E2-related factor-2 (Nrf2) negatively regulates NLRP3 inflammasome activity by inhibiting reactive oxygen species (ROS)-induced NLRP3 priming. Antioxid Redox Sig. doi:10.1089/ars.2015.6615

    Article  Google Scholar 

  189. Nicotera P, Leist M, Ferrando-May E (1999) Apoptosis and necrosis: different execution of the same death. Biochem Soc Symp 66:69–73

    Article  CAS  PubMed  Google Scholar 

  190. Samali A, Nordgren H, Zhivotovsky B, Peterson E, Orrenius S (1999) A comparative study of apoptosis and necrosis in HepG2 cells: oxidant-induced caspase inactivation leads to necrosis. Biochem Biophys Res Commun 255(1):6–11. doi:10.1006/bbrc.1998.0139

    Article  CAS  PubMed  Google Scholar 

  191. Ma YM, Peng YM, Zhu QH, Gao AH, Chao B, He QJ, Li J, Hu YH, Zhou YB (2016) Novel CHOP activator LGH00168 induces necroptosis in A549 human lung cancer cells via ROS-mediated ER stress and NF-kappaB inhibition. Acta Pharmacol Sin. doi:10.1038/aps.2016.61

    Article  PubMed  PubMed Central  Google Scholar 

  192. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282(5392):1318–1321

    Article  CAS  PubMed  Google Scholar 

  193. Allan LA, Morrice N, Brady S, Magee G, Pathak S, Clarke PR (2003) Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK. Nat Cell Biol 5(7):647–654. doi:10.1038/ncb1005

    Article  CAS  PubMed  Google Scholar 

  194. Brady SC, Allan LA, Clarke PR (2005) Regulation of caspase 9 through phosphorylation by protein kinase C zeta in response to hyperosmotic stress. Mol Cell Biol 25(23):10543–10555. doi:10.1128/MCB.25.23.10543-10555.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Allan LA, Clarke PR (2007) Phosphorylation of caspase-9 by CDK1/cyclin B1 protects mitotic cells against apoptosis. Mol Cell 26(2):301–310. doi:10.1016/j.molcel.2007.03.019

    Article  CAS  PubMed  Google Scholar 

  196. Andersen JL, Johnson CE, Freel CD, Parrish AB, Day JL, Buchakjian MR, Nutt LK, Thompson JW, Moseley MA, Kornbluth S (2009) Restraint of apoptosis during mitosis through interdomain phosphorylation of caspase-2. EMBO J 28(20):3216–3227. doi:10.1038/emboj.2009.253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Seng NS, Megyesi J, Tarcsafalvi A, Price PM (2016) Mimicking Cdk2 phosphorylation of Bcl-xL at Ser73 results in caspase activation and Bcl-xL cleavage. Cell Death Discov 2. doi:10.1038/cddiscovery.2016.1

  198. Helmke C, Raab M, Rodel F, Matthess Y, Oellerich T, Mandal R, Sanhaji M, Urlaub H, Rodel C, Becker S, Strebhardt K (2016) Ligand stimulation of CD95 induces activation of Plk3 followed by phosphorylation of caspase-8. Cell Res. doi:10.1038/cr.2016.78

    Article  PubMed  PubMed Central  Google Scholar 

  199. Pop C, Salvesen GS (2009) Human caspases: activation, specificity, and regulation. J Biol Chem 284(33):21777–21781. doi:10.1074/jbc.R800084200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Blankenship JW, Varfolomeev E, Goncharov T, Fedorova AV, Kirkpatrick DS, Izrael-Tomasevic A, Phu L, Arnott D, Aghajan M, Zobel K, Bazan JF, Fairbrother WJ, Deshayes K, Vucic D (2009) Ubiquitin binding modulates IAP antagonist-stimulated proteasomal degradation of c-IAP1 and c-IAP2(1). Biochem J 417(1):149–160. doi:10.1042/BJ20081885

    Article  CAS  PubMed  Google Scholar 

  201. Gyrd-Hansen M, Darding M, Miasari M, Santoro MM, Zender L, Xue W, Tenev T, da Fonseca PC, Zvelebil M, Bujnicki JM, Lowe S, Silke J, Meier P (2008) IAPs contain an evolutionarily conserved ubiquitin-binding domain that regulates NF-kappaB as well as cell survival and oncogenesis. Nat Cell Biol 10(11):1309–1317. doi:10.1038/ncb1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Zhang B, Huang J, Li HL, Liu T, Wang YY, Waterman P, Mao AP, Xu LG, Zhai Z, Liu D, Marrack P, Shu HB (2008) GIDE is a mitochondrial E3 ubiquitin ligase that induces apoptosis and slows growth. Cell Res 18(9):900–910. doi:10.1038/cr.2008.75

    Article  CAS  PubMed  Google Scholar 

  203. Huang H, Joazeiro CA, Bonfoco E, Kamada S, Leverson JD, Hunter T (2000) The inhibitor of apoptosis, cIAP2, functions as a ubiquitin-protein ligase and promotes in vitro monoubiquitination of caspases 3 and 7. J Biol Chem 275(35):26661–26664. doi:10.1074/jbc.C000199200

    Article  CAS  PubMed  Google Scholar 

  204. Mica L, Harter L, Trentz O, Keel M (2004) Endotoxin reduces CD95-induced neutrophil apoptosis by cIAP-2-mediated caspase-3 degradation. J Am Coll Surg 199(4):595–602. doi:10.1016/j.jamcollsurg.2004.05.272

    Article  PubMed  Google Scholar 

  205. Choi WY, Jin CY, Han MH, Kim GY, Kim ND, Lee WH, Kim SK, Choi YH (2009) Sanguinarine sensitizes human gastric adenocarcinoma AGS cells to TRAIL-mediated apoptosis via down-regulation of AKT and activation of caspase-3. Anticancer Res 29(11):4457–4465

    CAS  PubMed  Google Scholar 

  206. Chen L, Smith L, Wang Z, Smith JB (2003) Preservation of caspase-3 subunits from degradation contributes to apoptosis evoked by lactacystin: any single lysine or lysine pair of the small subunit is sufficient for ubiquitination. Mol Pharmacol 64(2):334–345. doi:10.1124/mol.64.2.334

    Article  CAS  PubMed  Google Scholar 

  207. Suzuki Y, Nakabayashi Y, Takahashi R (2001) Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc Natl Acad Sci U S A 98(15):8662–8667. doi:10.1073/pnas.161506698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Jin Z, Li Y, Pitti R, Lawrence D, Pham VC, Lill JR, Ashkenazi A (2009) Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. Cell 137(4):721–735. doi:10.1016/j.cell.2009.03.015

    Article  CAS  PubMed  Google Scholar 

  209. Adrain C, Murphy BM, Martin SJ (2005) Molecular ordering of the caspase activation cascade initiated by the cytotoxic T lymphocyte/natural killer (CTL/NK) protease granzyme B. J Biol Chem 280(6):4663–4673. doi:10.1074/jbc.M410915200

    Article  CAS  PubMed  Google Scholar 

  210. Kim HE, Jiang X, Du F, Wang X (2008) PHAPI, CAS, and Hsp 70 promote apoptosome formation by preventing Apaf-1 aggregation and enhancing nucleotide exchange on Apaf-1. Mol Cell 30(2):239–247. doi:10.1016/j.molcel.2008.03.014

    Article  CAS  PubMed  Google Scholar 

  211. Chinnaiyan AM, Orth K, O’Rourke K, Duan H, Poirier GG, Dixit VM (1996) Molecular ordering of the cell death pathway. Bcl-2 and Bcl-xL function upstream of the CED-3-like apoptotic proteases. J Biol Chem 271(9):4573–4576

    Article  CAS  PubMed  Google Scholar 

  212. Kersse K, Vanden Berghe T, Lamkanfi M, Vandenabeele P (2007) A phylogenetic and functional overview of inflammatory caspases and caspase-1-related CARD-only proteins. Biochem Soc Trans 35(Pt 6):1508–1511. doi:10.1042/BST0351508

    Article  CAS  PubMed  Google Scholar 

  213. Thome M, Schneider P, Hofmann K, Fickenscher H, Meinl E, Neipel F, Mattmann C, Burns K, Bodmer JL, Schroter M, Scaffidi C, Krammer PH, Peter ME, Tschopp J (1997) Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386(6624):517–521. doi:10.1038/386517a0

    Article  CAS  PubMed  Google Scholar 

  214. Krueger A, Schmitz I, Baumann S, Krammer PH, Kirchhoff S (2001) Cellular FLICE-inhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex. J Biol Chem 276(23):20633–20640. doi:10.1074/jbc.M101780200

    Article  CAS  PubMed  Google Scholar 

  215. Boatright KM, Deis C, Denault JB, Sutherlin DP, Salvesen GS (2004) Activation of caspases-8 and -10 by FLIP(L). Biochem J 382(Pt 2):651–657. doi:10.1042/BJ20040809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C, Hakem R, Salvesen GS, Green DR (2011) Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471(7338):363–367. doi:10.1038/nature09852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. van Raam BJ, Salvesen GS (2012) Proliferative versus apoptotic functions of caspase-8 Hetero or homo: the caspase-8 dimer controls cell fate. Biochimica et biophysica acta 1824(1):113–122. doi:10.1016/j.bbapap.2011.06.005

  218. Crook NE, Clem RJ, Miller LK (1993) An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J Virol 67(4):2168–2174

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Eckelman BP, Salvesen GS, Scott FL (2006) Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep 7(10):988–994. doi:10.1038/sj.embor.7400795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Chai J, Du C, Wu JW, Kyin S, Wang X, Shi Y (2000) Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406(6798):855–862. doi:10.1038/35022514

    Article  CAS  PubMed  Google Scholar 

  221. Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102(1):33–42

    Article  CAS  PubMed  Google Scholar 

  222. Singh N, D’Souza A, Cholleti A, Sastry GM, Bose K (2014) Dual regulatory switch confers tighter control on HtrA2 proteolytic activity. FEBS J 281(10):2456–2470. doi:10.1111/febs.12799

    Article  CAS  PubMed  Google Scholar 

  223. Bratton SB, Lewis J, Butterworth M, Duckett CS, Cohen GM (2002) XIAP inhibition of caspase-3 preserves its association with the Apaf-1 apoptosome and prevents CD95- and Bax-induced apoptosis. Cell Death Differ 9(9):881–892. doi:10.1038/sj.cdd.4401069

    Article  CAS  PubMed  Google Scholar 

  224. Callus BA, Vaux DL (2007) Caspase inhibitors: viral, cellular and chemical. Cell Death Differ 14(1):73–78. doi:10.1038/sj.cdd.4402034

    Article  CAS  PubMed  Google Scholar 

  225. Hornle M, Peters N, Thayaparasingham B, Vorsmann H, Kashkar H, Kulms D (2011) Caspase-3 cleaves XIAP in a positive feedback loop to sensitize melanoma cells to TRAIL-induced apoptosis. Oncogene 30(5):575–587. doi:10.1038/onc.2010.434

    Article  CAS  PubMed  Google Scholar 

  226. Burke SP, Smith L, Smith JB (2010) cIAP1 cooperatively inhibits procaspase-3 activation by the caspase-9 apoptosome. J Biol Chem 285(39):30061–30068. doi:10.1074/jbc.M110.125955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Semenkova L, Dudich E, Dudich I, Tokhtamisheva N, Tatulov E, Okruzhnov Y, Garcia-Foncillas J, Palop-Cubillo JA, Korpela T (2003) Alpha-fetoprotein positively regulates cytochrome c-mediated caspase activation and apoptosome complex formation. Euro J Biochem/FEBS 270(21):4388–4399

    Article  CAS  Google Scholar 

  228. Dudich E, Semenkova L, Dudich I, Denesyuk A, Tatulov E, Korpela T (2006) Alpha-fetoprotein antagonizes X-linked inhibitor of apoptosis protein anticaspase activity and disrupts XIAP-caspase interaction. FEBS J 273(16):3837–3849. doi:10.1111/j.1742-4658.2006.05391.x

    Article  CAS  PubMed  Google Scholar 

  229. Li Z, Jo J, Jia JM, Lo SC, Whitcomb DJ, Jiao S, Cho K, Sheng M (2010) Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell 141(5):859–871. doi:10.1016/j.cell.2010.03.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Gibon J, Unsain N, Gamache K, Thomas RA, De Leon A, Johnstone A, Nader K, Seguela P, Barker PA (2016) The X-linked inhibitor of apoptosis regulates long-term depression and learning rate. FASEB J (Official Publication of the Federation of American Societies for Experimental Biology). doi:10.1096/fj.201600384R

    Article  Google Scholar 

  231. Ohsawa S, Hamada S, Kuida K, Yoshida H, Igaki T, Miura M (2010) Maturation of the olfactory sensory neurons by Apaf-1/caspase-9-mediated caspase activity. Proc Natl Acad Sci U S A 107(30):13366–13371. doi:10.1073/pnas.0910488107

    Article  PubMed  PubMed Central  Google Scholar 

  232. Pasterkamp RJ, Peschon JJ, Spriggs MK, Kolodkin AL (2003) Semaphorin 7A promotes axon outgrowth through integrins and MAPKs. Nature 424(6947):398–405. doi:10.1038/nature01790

    Article  CAS  PubMed  Google Scholar 

  233. Connolly PF, Jager R, Fearnhead HO (2014) New roles for old enzymes: killer caspases as the engine of cell behavior changes. Front Physiol 5:149. doi:10.3389/fphys.2014.00149

    Article  PubMed  PubMed Central  Google Scholar 

  234. Olsson M, Zhivotovsky B (2011) Caspases and cancer. Cell Death Differ 18(9):1441–1449. doi:10.1038/cdd.2011.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Philchenkov A, Zavelevich M, Kroczak TJ, Los M (2004) Caspases and cancer: mechanisms of inactivation and new treatment modalities. Exp Oncol 26(2):82–97

    CAS  PubMed  Google Scholar 

  236. Hu B, Elinav E, Huber S, Booth CJ, Strowig T, Jin C, Eisenbarth SC, Flavell RA (2010) Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc Natl Acad Sci U S A 107(50):21635–21640. doi:10.1073/pnas.1016814108

    Article  PubMed  PubMed Central  Google Scholar 

  237. Lee JW, Kim MR, Soung YH, Nam SW, Kim SH, Lee JY, Yoo NJ, Lee SH (2006) Mutational analysis of the CASP6 gene in colorectal and gastric carcinomas. APMIS: acta pathologica, microbiologica, et immunologica Scandinavica 114(9):646–650. doi:10.1111/j.1600-0463.2006.apm_417.x

    Article  CAS  PubMed  Google Scholar 

  238. Yoo NJ, Lee JW, Kim YJ, Soung YH, Kim SY, Nam SW, Park WS, Lee JY, Lee SH (2004) Loss of caspase-2, -6 and -7 expression in gastric cancers. APMIS (acta pathologica, microbiologica, et immunologica Scandinavica) 112(6):330–335. doi:10.1111/j.1600-0463.2004.apm1120602.x

    Article  CAS  Google Scholar 

  239. Soung YH, Lee JW, Kim HS, Park WS, Kim SY, Lee JH, Park JY, Cho YG, Kim CJ, Park YG, Nam SW, Jeong SW, Kim SH, Lee JY, Yoo NJ, Lee SH (2003) Inactivating mutations of CASPASE-7 gene in human cancers. Oncogene 22(39):8048–8052. doi:10.1038/sj.onc.1206727

    Article  CAS  PubMed  Google Scholar 

  240. Teitz T, Wei T, Valentine MB, Vanin EF, Grenet J, Valentine VA, Behm FG, Look AT, Lahti JM, Kidd VJ (2000) Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 6(5):529–535. doi:10.1038/75007

    Article  CAS  PubMed  Google Scholar 

  241. Kim HS, Lee JW, Soung YH, Park WS, Kim SY, Lee JH, Park JY, Cho YG, Kim CJ, Jeong SW, Nam SW, Kim SH, Lee JY, Yoo NJ, Lee SH (2003) Inactivating mutations of caspase-8 gene in colorectal carcinomas. Gastroenterology 125(3):708–715

    Article  CAS  PubMed  Google Scholar 

  242. Soung YH, Lee JW, Kim SY, Sung YJ, Park WS, Nam SW, Kim SH, Lee JY, Yoo NJ, Lee SH (2005) Caspase-8 gene is frequently inactivated by the frameshift somatic mutation 1225_1226delTG in hepatocellular carcinomas. Oncogene 24(1):141–147. doi:10.1038/sj.onc.1208244

    Article  CAS  PubMed  Google Scholar 

  243. Shin MS, Kim HS, Kang CS, Park WS, Kim SY, Lee SN, Lee JH, Park JY, Jang JJ, Kim CW, Kim SH, Lee JY, Yoo NJ, Lee SH (2002) Inactivating mutations of CASP10 gene in non-Hodgkin lymphomas. Blood 99(11):4094–4099

    Article  CAS  PubMed  Google Scholar 

  244. Kim MS, Oh JE, Min CK, Lee S, Chung NG, Yoo NJ, Lee SH (2009) Mutational analysis of CASP10 gene in acute leukaemias and multiple myelomas. Pathology 41(5):484–487

    Article  CAS  PubMed  Google Scholar 

  245. Oh JE, Kim MS, Ahn CH, Kim SS, Han JY, Lee SH, Yoo NJ (2010) Mutational analysis of CASP10 gene in colon, breast, lung and hepatocellular carcinomas. Pathology 42(1):73–76. doi:10.3109/00313020903434371

    Article  CAS  PubMed  Google Scholar 

  246. Park WS, Lee JH, Shin MS, Park JY, Kim HS, Lee JH, Kim YS, Lee SN, Xiao W, Park CH, Lee SH, Yoo NJ, Lee JY (2002) Inactivating mutations of the caspase-10 gene in gastric cancer. Oncogene 21(18):2919–2925. doi:10.1038/sj.onc.1205394

    Article  CAS  PubMed  Google Scholar 

  247. MacPherson G, Healey CS, Teare MD, Balasubramanian SP, Reed MW, Pharoah PD, Ponder BA, Meuth M, Bhattacharyya NP, Cox A (2004) Association of a common variant of the CASP8 gene with reduced risk of breast cancer. J Natl Cancer Inst 96(24):1866–1869. doi:10.1093/jnci/dji001

    Article  CAS  PubMed  Google Scholar 

  248. Frank B, Bermejo JL, Hemminki K, Klaes R, Bugert P, Wappenschmidt B, Schmutzler RK, Burwinkel B (2005) Re: association of a common variant of the CASP8 gene with reduced risk of breast cancer. J Natl Cancer Inst 97(13):1012; author reply 1012–1013. doi:10.1093/jnci/dji178

  249. Cacina C, Pence S, Turan S, Genc F, Ozdemir H, Kafadar A, Kaynar MY, Yaylim I (2015) Analysis of CASP8 D302H gene variants in patients with primary brain tumors. In vivo 29(5):601–604

    CAS  PubMed  Google Scholar 

  250. Lan Q, Morton LM, Armstrong B, Hartge P, Menashe I, Zheng T, Purdue MP, Cerhan JR, Zhang Y, Grulich A, Cozen W, Yeager M, Holford TR, Vajdic CM, Davis S, Leaderer B, Kricker A, Schenk M, Zahm SH, Chatterjee N, Chanock SJ, Rothman N, Wang SS (2009) Genetic variation in caspase genes and risk of non-Hodgkin lymphoma: a pooled analysis of 3 population-based case-control studies. Blood 114(2):264–267. doi:10.1182/blood-2009-01-198697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Dogan A, Wang AH, Witzig TE, Call TG, Kay NE, Habermann TM, Slager SL, Cerhan JR (2010) Germline variation in apoptosis pathway genes and risk of non-Hodgkin’s lymphoma. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 19(11):2847–2858. doi:10.1158/1055-9965.EPI-10-0581

  252. Park JY, Park JM, Jang JS, Choi JE, Kim KM, Cha SI, Kim CH, Kang YM, Lee WK, Kam S, Park RW, Kim IS, Lee JT, Jung TH (2006) Caspase 9 promoter polymorphisms and risk of primary lung cancer. Hum Mol Genet 15(12):1963–1971. doi:10.1093/hmg/ddl119

    Article  CAS  PubMed  Google Scholar 

  253. Chen K, Zhao H, Hu Z, Wang LE, Zhang W, Sturgis EM, Wei Q (2008) CASP3 polymorphisms and risk of squamous cell carcinoma of the head and neck. Clin Cancer Res (An Official Journal of the American Association for Cancer Research) 14(19):6343–6349. doi:10.1158/1078-0432.CCR-08-1198

    Article  CAS  Google Scholar 

  254. Jang JS, Kim KM, Choi JE, Cha SI, Kim CH, Lee WK, Kam S, Jung TH, Park JY (2008) Identification of polymorphisms in the Caspase-3 gene and their association with lung cancer risk. Mol Carcinog 47(5):383–390. doi:10.1002/mc.20397

    Article  CAS  PubMed  Google Scholar 

  255. Hosgood HD 3rd, Baris D, Zhang Y, Zhu Y, Zheng T, Yeager M, Welch R, Zahm S, Chanock S, Rothman N, Lan Q (2008) Caspase polymorphisms and genetic susceptibility to multiple myeloma. Hematol Oncol 26(3):148–151. doi:10.1002/hon.852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Lan Q, Zheng T, Chanock S, Zhang Y, Shen M, Wang SS, Berndt SI, Zahm SH, Holford TR, Leaderer B, Yeager M, Welch R, Hosgood D, Boyle P, Rothman N (2007) Genetic variants in caspase genes and susceptibility to non-Hodgkin lymphoma. Carcinogenesis 28(4):823–827. doi:10.1093/carcin/bgl196

    Article  CAS  PubMed  Google Scholar 

  257. Gabay C, Lamacchia C, Palmer G (2010) IL-1 pathways in inflammation and human diseases. Nat Rev Rheumatol 6(4):232–241. doi:10.1038/nrrheum.2010.4

    Article  CAS  PubMed  Google Scholar 

  258. Brydges SD, Mueller JL, McGeough MD, Pena CA, Misaghi A, Gandhi C, Putnam CD, Boyle DL, Firestein GS, Horner AA, Soroosh P, Watford WT, O’Shea JJ, Kastner DL, Hoffman HM (2009) Inflammasome-mediated disease animal models reveal roles for innate but not adaptive immunity. Immunity 30(6):875–887. doi:10.1016/j.immuni.2009.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Meng G, Zhang F, Fuss I, Kitani A, Strober W (2009) A mutation in the Nlrp3 gene causing inflammasome hyperactivation potentiates Th17 cell-dominant immune responses. Immunity 30(6):860–874. doi:10.1016/j.immuni.2009.04.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Spranger J, Kroke A, Mohlig M, Hoffmann K, Bergmann MM, Ristow M, Boeing H, Pfeiffer AF (2003) Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European prospective investigation into cancer and nutrition (EPIC)-potsdam study. Diabetes 52(3):812–817

    Article  CAS  PubMed  Google Scholar 

  261. Maedler K, Dharmadhikari G, Schumann DM, Storling J (2009) Interleukin-1 beta targeted therapy for type 2 diabetes. Expert Opin Biol Ther 9(9):1177–1188. doi:10.1517/14712590903136688

    Article  CAS  PubMed  Google Scholar 

  262. Papin S, Cuenin S, Agostini L, Martinon F, Werner S, Beer HD, Grutter C, Grutter M, Tschopp J (2007) The SPRY domain of Pyrin, mutated in familial mediterranean fever patients, interacts with inflammasome components and inhibits proIL-1beta processing. Cell Death Differ 14(8):1457–1466. doi:10.1038/sj.cdd.4402142

    Article  CAS  PubMed  Google Scholar 

  263. Shoham NG, Centola M, Mansfield E, Hull KM, Wood G, Wise CA, Kastner DL (2003) Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial mediterranean fever and PAPA syndrome as disorders in the same pathway. Proc Natl Acad Sci U S A 100(23):13501–13506. doi:10.1073/pnas.2135380100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Mandey SH, Kuijk LM, Frenkel J, Waterham HR (2006) A role for geranylgeranylation in interleukin-1beta secretion. Arthritis Rheum 54(11):3690–3695. doi:10.1002/art.22194

    Article  CAS  PubMed  Google Scholar 

  265. Kuijk LM, Beekman JM, Koster J, Waterham HR, Frenkel J, Coffer PJ (2008) HMG-CoA reductase inhibition induces IL-1beta release through Rac1/PI3K/PKB-dependent caspase-1 activation. Blood 112(9):3563–3573. doi:10.1182/blood-2008-03-144667

    Article  CAS  PubMed  Google Scholar 

  266. Vila M, Przedborski S (2003) Targeting programmed cell death in neurodegenerative diseases. Nat Rev Neurosci 4(5):365–375. doi:10.1038/nrn1100

    Article  CAS  PubMed  Google Scholar 

  267. Rohn TT, Head E, Su JH, Anderson AJ, Bahr BA, Cotman CW, Cribbs DH (2001) Correlation between caspase activation and neurofibrillary tangle formation in Alzheimer’s disease. Am J Pathol 158(1):189–198. doi:10.1016/S0002-9440(10)63957-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. D’Amelio M, Cavallucci V, Middei S, Marchetti C, Pacioni S, Ferri A, Diamantini A, De Zio D, Carrara P, Battistini L, Moreno S, Bacci A, Ammassari-Teule M, Marie H, Cecconi F (2011) Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer’s disease. Nat Neurosci 14(1):69–76. doi:10.1038/nn.2709

    Article  CAS  PubMed  Google Scholar 

  269. de Calignon A, Fox LM, Pitstick R, Carlson GA, Bacskai BJ, Spires-Jones TL, Hyman BT (2010) Caspase activation precedes and leads to tangles. Nature 464(7292):1201–1204. doi:10.1038/nature08890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Onouchi Y, Ozaki K, Buns JC, Shimizu C, Hamada H, Honda T, Terai M, Honda A, Takeuchi T, Shibuta S, Suenaga T, Suzuki H, Higashi K, Yasukawa K, Suzuki Y, Sasago K, Kemmotsu Y, Takatsuki S, Saji T, Yoshikawa T, Nagai T, Hamamoto K, Kishi F, Ouchi K, Sato Y, Newburger JW, Baker AL, Shulman ST, Rowley AH, Yashiro M, Nakamura Y, Wakui K, Fukushima Y, Fujino A, Tsunoda T, Kawasaki T, Hata A, Nakamura Y, Tanaka T (2010) Common variants in CASP3 confer susceptibility to Kawasaki disease. Hum Mol Genet 19(14):2898–2906. doi:10.1093/hmg/ddq176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Fleisher TA (2008) The autoimmune lymphoproliferative syndrome: an experiment of nature involving lymphocyte apoptosis. Immunol Res 40(1):87–92. doi:10.1007/s12026-007-8001-1

    Article  PubMed  Google Scholar 

  272. Su CL, Huang LL, Huang LM, Lee JC, Lin CN, Won SJ (2006) Caspase-8 acts as a key upstream executor of mitochondria during justicidin a-induced apoptosis in human hepatoma cells. FEBS Lett 580(13):3185–3191. doi:10.1016/j.febslet.2006.04.085

    Article  CAS  PubMed  Google Scholar 

  273. He XL, Zhang P, Dong XZ, Yang MH, Chen SL, Bi MG (2012) JR6, a new compound isolated from justicia procumbens, induces apoptosis in human bladder cancer EJ cells through caspase-dependent pathway. J Ethnopharmacol 144(2):284–292. doi:10.1016/j.jep.2012.09.010

    Article  CAS  PubMed  Google Scholar 

  274. Ghobrial IM, Witzig TE, Adjei AA (2005) Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin 55(3):178–194

    Article  PubMed  Google Scholar 

  275. Jiang M, Zhu K, Grenet J, Lahti JM (2008) Retinoic acid induces caspase-8 transcription via phospho-CREB and increases apoptotic responses to death stimuli in neuroblastoma cells. Biochem Biophys Acta 1783(6):1055–1067. doi:10.1016/j.bbamcr.2008.02.007

    Article  CAS  PubMed  Google Scholar 

  276. Banelli B, Casciano I, Croce M, Di Vinci A, Gelvi I, Pagnan G, Brignole C, Allemanni G, Ferrini S, Ponzoni M, Romani M (2002) Expression and methylation of CASP8 in neuroblastoma: identification of a promoter region. Nat Med 8(12):1333–1335; author reply 1335. doi:10.1038/nm1202-1333

  277. Liedtke C, Zschemisch NH, Cohrs A, Roskams T, Borlak J, Manns MP, Trautwein C (2005) Silencing of caspase-8 in murine hepatocellular carcinomas is mediated via methylation of an essential promoter element. Gastroenterology 129(5):1602–1615. doi:10.1053/j.gastro.2005.08.007

    Article  CAS  PubMed  Google Scholar 

  278. Fulda S, Debatin KM (2006) 5-Aza-2’-deoxycytidine and IFN-gamma cooperate to sensitize for TRAIL-induced apoptosis by upregulating caspase-8. Oncogene 25(37):5125–5133. doi:10.1038/sj.onc.1209518

    Article  CAS  PubMed  Google Scholar 

  279. Hensley P, Mishra M, Kyprianou N (2013) Targeting caspases in cancer therapeutics. Biol Chem 394(7):831–843. doi:10.1515/hsz-2013-0128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ, Schreiber RD (1998) Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci U S A 95(13):7556–7561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Fulda S, Debatin KM (2002) IFNgamma sensitizes for apoptosis by upregulating caspase-8 expression through the Stat1 pathway. Oncogene 21(15):2295–2308. doi:10.1038/sj.onc.1205255

    Article  CAS  PubMed  Google Scholar 

  282. Tekautz TM, Zhu K, Grenet J, Kaushal D, Kidd VJ, Lahti JM (2006) Evaluation of IFN-gamma effects on apoptosis and gene expression in neuroblastoma–preclinical studies. Biochem Biophys Acta 1763(10):1000–1010. doi:10.1016/j.bbamcr.2006.06.014

    Article  CAS  PubMed  Google Scholar 

  283. Jiang X, Kim HE, Shu H, Zhao Y, Zhang H, Kofron J, Donnelly J, Burns D, Ng SC, Rosenberg S, Wang X (2003) Distinctive roles of PHAP proteins and prothymosin-alpha in a death regulatory pathway. Science 299(5604):223–226. doi:10.1126/science.1076807

    Article  CAS  PubMed  Google Scholar 

  284. Zhang HZ, Kasibhatla S, Wang Y, Herich J, Guastella J, Tseng B, Drewe J, Cai SX (2004) Discovery, characterization and SAR of gambonic acid as a potent apoptosis inducer by a HTS assay. Bioorg Med Chem 12(2):309–317

    Article  PubMed  Google Scholar 

  285. Fischer U, Schulze-Osthoff K (2005) New approaches and therapeutics targeting apoptosis in disease. Pharmacol Rev 57(2):187–215. doi:10.1124/pr.57.2.6

    Article  CAS  PubMed  Google Scholar 

  286. Putt KS, Chen GW, Pearson JM, Sandhorst JS, Hoagland MS, Kwon JT, Hwang SK, Jin H, Churchwell MI, Cho MH, Doerge DR, Helferich WG, Hergenrother PJ (2006) Small-molecule activation of procaspase-3 to caspase-3 as a personalized anticancer strategy. Nat Chem Biol 2(10):543–550. doi:10.1038/nchembio814

    Article  CAS  PubMed  Google Scholar 

  287. Peterson QP, Hsu DC, Goode DR, Novotny CJ, Totten RK, Hergenrother PJ (2009) Procaspase-3 activation as an anti-cancer strategy: structure-activity relationship of procaspase-activating compound 1 (PAC-1) and its cellular co-localization with caspase-3. J Med Chem 52(18):5721–5731. doi:10.1021/jm900722z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Denault JB, Drag M, Salvesen GS, Alves J, Heidt AB, Deveraux Q, Harris JL (2007) Small molecules not direct activators of caspases. Nat Chem Biol 3(9):519, author reply 520. doi:10.1038/nchembio0907-519

    Article  CAS  PubMed  Google Scholar 

  289. Peterson QP, Hsu DC, Novotny CJ, West DC, Kim D, Schmit JM, Dirikolu L, Hergenrother PJ, Fan TM (2010) Discovery and canine preclinical assessment of a nontoxic procaspase-3-activating compound. Cancer Res 70(18):7232–7241. doi:10.1158/0008-5472.CAN-10-0766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Vogler M, Dinsdale D, Dyer MJ, Cohen GM (2009) Bcl-2 inhibitors: small molecules with a big impact on cancer therapy. Cell Death Differ 16(3):360–367. doi:10.1038/cdd.2008.137

    Article  CAS  PubMed  Google Scholar 

  291. Chen DJ, Huerta S (2009) Smac mimetics as new cancer therapeutics. Anticancer Drugs 20(8):646–658. doi:10.1097/CAD.0b013e32832ced78

    Article  CAS  PubMed  Google Scholar 

  292. Lu Y, Chen GQ (2011) Effector caspases and leukemia. Int J Cell Biol 2011:738301. doi:10.1155/2011/738301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Velculescu VE, Madden SL, Zhang L, Lash AE, Yu J, Rago C, Lal A, Wang CJ, Beaudry GA, Ciriello KM, Cook BP, Dufault MR, Ferguson AT, Gao Y, He TC, Hermeking H, Hiraldo SK, Hwang PM, Lopez MA, Luderer HF, Mathews B, Petroziello JM, Polyak K, Zawel L, Kinzler KW et al (1999) Analysis of human transcriptomes. Nat Genet 23(4):387–388. doi:10.1038/70487

    Article  CAS  PubMed  Google Scholar 

  294. Kawasaki H, Altieri DC, Lu CD, Toyoda M, Tenjo T, Tanigawa N (1998) Inhibition of apoptosis by survivin predicts shorter survival rates in colorectal cancer. Cancer Res 58(22):5071–5074

    CAS  PubMed  Google Scholar 

  295. Church DN, Talbot DC (2012) Survivin in solid tumors: rationale for development of inhibitors. Curr Oncol R 14(2):120–128. doi:10.1007/s11912-012-0215-2

    Article  CAS  Google Scholar 

  296. Amarante-Mendes GP, Griffith TS (2015) Therapeutic applications of TRAIL receptor agonists in cancer and beyond. Pharmacol Ther 155:117–131. doi:10.1016/j.pharmthera.2015.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Xie X, Zhao X, Liu Y, Zhang J, Matusik RJ, Slawin KM, Spencer DM (2001) Adenovirus-mediated tissue-targeted expression of a caspase-9-based artificial death switch for the treatment of prostate cancer. Cancer Res 61(18):6795–6804

    CAS  PubMed  Google Scholar 

  298. Komata T, Kondo Y, Kanzawa T, Hirohata S, Koga S, Sumiyoshi H, Srinivasula SM, Barna BP, Germano IM, Takakura M, Inoue M, Alnemri ES, Shay JW, Kyo S, Kondo S (2001) Treatment of malignant glioma cells with the transfer of constitutively active caspase-6 using the human telomerase catalytic subunit (human telomerase reverse transcriptase) gene promoter. Cancer Res 61(15):5796–5802

    CAS  PubMed  Google Scholar 

  299. Certo M, Del Gaizo Moore V, Nishino M, Wei G, Korsmeyer S, Armstrong SA, Letai A (2006) Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9(5):351–365. doi:10.1016/j.ccr.2006.03.027

    Article  CAS  PubMed  Google Scholar 

  300. Tey SK, Dotti G, Rooney CM, Heslop HE, Brenner MK (2007) Inducible caspase 9 suicide gene to improve the safety of allodepleted T cells after haploidentical stem cell transplantation. Biol Blood Marrow Transplant (Journal of the American Society for Blood and Marrow Transplantation) 13(8):913–924. doi:10.1016/j.bbmt.2007.04.005

    Article  CAS  Google Scholar 

  301. Straathof KC, Pule MA, Yotnda P, Dotti G, Vanin EF, Brenner MK, Heslop HE, Spencer DM, Rooney CM (2005) An inducible caspase 9 safety switch for T-cell therapy. Blood 105(11):4247–4254. doi:10.1182/blood-2004-11-4564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Larsen CM, Faulenbach M, Vaag A, Ehses JA, Donath MY, Mandrup-Poulsen T (2009) Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diabetes Care 32(9):1663–1668. doi:10.2337/dc09-0533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140(6):821–832. doi:10.1016/j.cell.2010.01.040

    Article  CAS  PubMed  Google Scholar 

  304. Davidson FF, Steller H (1998) Blocking apoptosis prevents blindness in Drsosophila retinal degeneration mutants. Nature 391(6667):587–591. doi:10.1038/35385

    Article  CAS  PubMed  Google Scholar 

  305. O’Brien RJ, Wong PC (2011) Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 34:185–204. doi:10.1146/annurev-neuro-061010-113613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Thornberry NA (1998) Caspases: key mediators of apoptosis. Chem Biol 5(5):R97–103

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kakoli Bose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parui, A.L., Bose, K. (2017). Caspases: Regulatory Mechanisms and Their Implications in Pathogenesis and Therapeutics. In: Chakraborti, S., Dhalla, N. (eds) Pathophysiological Aspects of Proteases. Springer, Singapore. https://doi.org/10.1007/978-981-10-6141-7_18

Download citation

Publish with us

Policies and ethics